A novel mobile robot localization approach based on topological maps using classification with reject option in omnidirectional images

Novel method for localization via classification with reject option using omnidirectional images.Evaluation of feature extraction and machine learning techniques in omnidirectional images.Autonomous system based on mobile robot topological map localization.Validation in real and virtual environment.Novel virtual simulation environment and two data sets (virtual and real data). Mobile robot localization, which allows a robot to identify its position, is one of main challenges in the field of Robotics. In this work, we provide an evaluation of consolidated feature extractions and machine learning techniques from omnidirectional images focusing on topological map and localization tasks. The main contributions of this work are a novel method for localization via classification with reject option using omnidirectional images, as well as two novel omnidirectional image data sets. The localization system was analyzed in both virtual and real environments. Based on the experiments performed, the Minimal Learning Machine with Nearest Neighbors classifier and Local Binary Patterns feature extraction proved to be the best combination for mobile robot localization with accuracy of 96.7% and an Fscore of 96.6%.

[1]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[2]  Heping Chen,et al.  Topological Indoor Localization and Navigation for Autonomous Mobile Robot , 2015, IEEE Transactions on Automation Science and Engineering.

[3]  Andrzej Kwiecien,et al.  Reliability of Bluetooth Smart Technology for Indoor Localization System , 2015, CN.

[4]  Honggui Li,et al.  Low-Cost 3D Bluetooth Indoor Positioning with Least Square , 2014, Wirel. Pers. Commun..

[5]  Miroslav Kárný,et al.  Mutual Impact of Computing Power and Control Theory , 2012 .

[6]  Osamu Hasegawa,et al.  Vision-based mobile robot's SLAM and navigation in crowded environments , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[7]  Thomas G. Dietterich,et al.  Solving Multiclass Learning Problems via Error-Correcting Output Codes , 1994, J. Artif. Intell. Res..

[8]  Naoyuki Kubota,et al.  Multi-channel Bayesian Adaptive Resonance Associate Memory for on-line topological map building , 2016, Appl. Soft Comput..

[9]  Chu Kiong Loo,et al.  Robot behaviour learning using Topological Gaussian Adaptive Resonance Hidden Markov Model , 2016, Neural Computing and Applications.

[10]  Ludek Zalud,et al.  Robust detection of shady and highlighted roads for monocular camera based navigation of UGV , 2011, 2011 IEEE International Conference on Robotics and Automation.

[11]  Patrik Kamencay,et al.  Comparison of SIFT and SURF Methods for Use on Hand Gesture Recognition based on Depth Map , 2014 .

[12]  Jong-Suk Choi,et al.  Advanced indoor localization using ultrasonic sensor and digital compass , 2008, 2008 International Conference on Control, Automation and Systems.

[13]  S. Sathiya Keerthi,et al.  Which Is the Best Multiclass SVM Method? An Empirical Study , 2005, Multiple Classifier Systems.

[14]  Ling Shao,et al.  Recent advances and trends in visual tracking: A review , 2011, Neurocomputing.

[15]  Haiyun Luo,et al.  Zero-configuration indoor localization over IEEE 802.11 wireless infrastructure , 2010, Wirel. Networks.

[16]  Jie Chen,et al.  A new regional shape index for classification of high resolution remote sensing images , 2014, 2014 Third International Workshop on Earth Observation and Remote Sensing Applications (EORSA).

[17]  Banshidhar Majhi,et al.  Mammogram classification using two dimensional discrete wavelet transform and gray-level co-occurrence matrix for detection of breast cancer , 2015, Neurocomputing.

[18]  Sergios Theodoridis,et al.  Pattern Recognition, Fourth Edition , 2008 .

[19]  Chu Kiong Loo,et al.  Topological Q-learning with internally guided exploration for mobile robot navigation , 2015, Neural Computing and Applications.

[20]  Kevin Curran,et al.  A survey of active and passive indoor localisation systems , 2012, Comput. Commun..

[21]  Liang Ding,et al.  Diagonal recurrent neural networks for parameters identification of terrain based on wheel–soil interaction analysis , 2017, Neural Computing and Applications.

[22]  E. Clua,et al.  Evaluation of surface roughness standards applying Haralick parameters and Artificial Neural Networks , 2012, 2012 19th International Conference on Systems, Signals and Image Processing (IWSSIP).

[23]  Andrea Bonarini,et al.  Intelligent Autonomous Systems 8 , 2004 .

[24]  Shahrul Na'im Sidek,et al.  Implementation of GLCM features in thermal imaging for human affective state detection , 2015 .

[25]  H. Y. Hsieh,et al.  Recognising daytime and nighttime driving images using bayes classifier , 2012 .

[26]  Sudeep D. Thepade,et al.  Novel Content Based Image Classification Method Using LBG Vector Quantization Method with Bayes and Lazy Family Data Mining Classifiers , 2016 .

[27]  Wojciech Turek,et al.  Open-source Localization Device for Indoor Mobile Robots , 2015 .

[28]  Ulf Witkowski,et al.  Performance Analysis of Small Size and Power Efficient UWB Communication Nodes for Indoor Localization , 2016, TAROS.

[29]  Luca Mainetti,et al.  A survey on indoor positioning systems , 2014, 2014 22nd International Conference on Software, Telecommunications and Computer Networks (SoftCOM).

[30]  Sun Lining,et al.  Robust omnidirectional mobile robot topological navigation system using omnidirectional vision , 2013 .

[31]  Wu Chen,et al.  A New Indoor Positioning System Architecture Using GPS Signals , 2015, Sensors.

[32]  Minho Lee,et al.  Dynamic obstacle identification based on global and local features for a driver assistance system , 2011, Neural Computing and Applications.

[33]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[34]  Francisco Bonin-Font,et al.  Visual Navigation for Mobile Robots: A Survey , 2008, J. Intell. Robotic Syst..

[35]  Koby Crammer,et al.  On the Algorithmic Implementation of Multiclass Kernel-based Vector Machines , 2002, J. Mach. Learn. Res..

[36]  Fátima N. S. de Medeiros,et al.  Rotation-invariant feature extraction using a structural co-occurrence matrix , 2016 .

[37]  Simon Haykin,et al.  Neural Networks and Learning Machines , 2010 .

[38]  Dilbag Singh,et al.  Improved occupancy grid mapping in specular environment , 2012, Robotics Auton. Syst..

[39]  Yasuo Tan,et al.  User Indoor Location System with Passive Infrared Motion Sensors and Space Subdivision , 2014, HCI.

[40]  Jean-Luc Zarader,et al.  A binaural sound source localization method using auditive cues and vision , 2012, 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[41]  F. Seco,et al.  A comparison of Pedestrian Dead-Reckoning algorithms using a low-cost MEMS IMU , 2009, 2009 IEEE International Symposium on Intelligent Signal Processing.

[42]  Frank Dellaert,et al.  Online probabilistic topological mapping , 2011, Int. J. Robotics Res..

[43]  Eyal de Lara,et al.  GSM indoor localization , 2007, Pervasive Mob. Comput..

[44]  João Paulo Papa,et al.  Efficient supervised optimum-path forest classification for large datasets , 2012, Pattern Recognit..

[45]  Ugur Yayan,et al.  A Low Cost Ultrasonic Based Positioning System for the Indoor Navigation of Mobile Robots , 2015, J. Intell. Robotic Syst..

[46]  Hongwei Liu,et al.  On the Levenberg-Marquardt training method for feed-forward neural networks , 2010, 2010 Sixth International Conference on Natural Computation.

[47]  A. Paul,et al.  Digit recognition from pressure sensor data using Euler number and central moments , 2012, 2012 International Conference on Communications, Devices and Intelligent Systems (CODIS).

[48]  Antonios Gasteratos,et al.  Thorough robot navigation based on SVM local planning , 2015, Robotics Auton. Syst..

[49]  Nak Yong Ko,et al.  Fusing Range Measurements from Ultrasonic Beacons and a Laser Range Finder for Localization of a Mobile Robot , 2015, Sensors.

[50]  Jon Atli Benediktsson,et al.  Retrieval of the Height of Buildings From WorldView-2 Multi-Angular Imagery Using Attribute Filters and Geometric Invariant Moments , 2012, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[51]  Nikola Kasabov,et al.  Novel Applications of Intelligent Systems , 2016 .

[52]  Katsushi Ikeuchi Computer Vision: A Reference Guide , 2014 .

[53]  Xiangyang Wang,et al.  LS-SVM based image segmentation using color and texture information , 2012, J. Vis. Commun. Image Represent..

[54]  Shih-Hau Fang,et al.  An Enhanced ZigBee Indoor Positioning System With an Ensemble Approach , 2012, IEEE Communications Letters.

[55]  Lisandro Lovisolo,et al.  Wi-Fi multi-floor indoor positioning considering architectural aspects and controlled computational complexity , 2014, Expert Syst. Appl..

[56]  Amaury Lendasse,et al.  Minimal Learning Machine: A novel supervised distance-based approach for regression and classification , 2015, Neurocomputing.

[57]  Jaime S. Cardoso,et al.  Robust classification with reject option using the self-organizing map , 2015, Neural Computing and Applications.

[58]  Andrea Vedaldi,et al.  Vlfeat: an open and portable library of computer vision algorithms , 2010, ACM Multimedia.

[59]  Michal R. Nowicki,et al.  Indoor Navigation with a Smartphone Fusing Inertial and WiFi Data via Factor Graph Optimization , 2015, MobiCASE.

[60]  M.H. Ang,et al.  Appearance-based SLAM with map loop closing using an omnidirectional camera , 2007, 2007 IEEE/ASME international conference on advanced intelligent mechatronics.

[61]  Ryo Kurazume,et al.  Categorization of Indoor Places Using the Kinect Sensor , 2012, Sensors.

[62]  Alicja Wakulicz-Deja,et al.  Man-Machine Interactions 3, Proceedings of the 3rd International Conference on Man-Machine Interactions, ICMMI 2013, Brenna, Poland, October 22-25, 2013 , 2014, ICMMI.

[63]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[64]  Hao Wu,et al.  Spatial semantic hybrid map building and application of mobile service robot , 2014, Robotics Auton. Syst..

[65]  Héctor M. Becerra,et al.  Evaluation of Local Descriptors for Vision-Based Localization of Humanoid Robots , 2015, MCPR.

[66]  Myo-Taeg Lim,et al.  MDGHM-SURF: A robust local image descriptor based on modified discrete Gaussian-Hermite moment , 2015, Pattern Recognit..

[67]  Dorian Gálvez-López,et al.  Bags of Binary Words for Fast Place Recognition in Image Sequences , 2012, IEEE Transactions on Robotics.

[68]  João Paulo Pordeus Gomes,et al.  Ensemble of Minimal Learning Machines for Pattern Classification , 2015, IWANN.

[69]  David G. Stork,et al.  Pattern Classification (2nd ed.) , 1999 .

[70]  Lorenz Gerstmayr-Hillen,et al.  Dense topological maps and partial pose estimation for visual control of an autonomous cleaning robot , 2013, Robotics Auton. Syst..

[71]  Rita Cucchiara,et al.  Real-time object detection and localization with SIFT-based clustering , 2012, Image Vis. Comput..

[72]  José A. Castellanos,et al.  Mobile Robot Localization and Map Building: A Multisensor Fusion Approach , 2000 .

[73]  Hend Suliman Al-Khalifa,et al.  Ultra Wideband Indoor Positioning Technologies: Analysis and Recent Advances † , 2016, Sensors.

[74]  Luca Calderoni,et al.  Indoor localization in a hospital environment using Random Forest classifiers , 2015, Expert Syst. Appl..

[75]  Guang-Zhong Yang,et al.  Global localization in a dense continuous topological map , 2011, 2011 IEEE International Conference on Robotics and Automation.

[76]  Jan Flusser,et al.  Projection Operators and Moment Invariants to Image Blurring , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[77]  Ankit Chaudhary,et al.  Fabric defect detection based on GLCM and Gabor filter: A comparison , 2013 .

[78]  R.M. Haralick,et al.  Statistical and structural approaches to texture , 1979, Proceedings of the IEEE.

[79]  M. Bernardine Dias,et al.  Robust Indoor Localization on a Commercial Smart Phone , 2012, ANT/MobiWIS.

[80]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[81]  Roland Siegwart,et al.  DP-FACT: Towards topological mapping and scene recognition with color for omnidirectional camera , 2012, 2012 IEEE International Conference on Robotics and Automation.

[82]  Indra Gupta,et al.  Classification of bamboo plant based on digital image processing by Central moment , 2011, 2011 International Conference on Image Information Processing.

[83]  Naixue Xiong,et al.  A Fingerprint Recognition Scheme Based on Assembling Invariant Moments for Cloud Computing Communications , 2011, IEEE Systems Journal.

[84]  Shigeo Abe,et al.  Fuzzy least squares support vector machines for multiclass problems , 2003, Neural Networks.

[85]  Ajay Mittal,et al.  Application of Complete Local Binary Pattern Method for facial expression recognition , 2012, 2012 4th International Conference on Intelligent Human Computer Interaction (IHCI).

[86]  Johan A. K. Suykens,et al.  Least Squares Support Vector Machine Classifiers , 1999, Neural Processing Letters.

[87]  Bastian Hartmann,et al.  Human worker activity recognition in industrial environments , 2011 .

[88]  Emilio Garcia-Fidalgo,et al.  Vision-based topological mapping and localization methods: A survey , 2015, Robotics Auton. Syst..

[89]  Bin Xiao,et al.  Object recognition based on the Region of Interest and optimal Bag of Words model , 2016, Neurocomputing.

[90]  Takeo Kanade,et al.  Intelligent Autonomous Systems , 1991, Robotics Auton. Syst..

[91]  Grant Schindler,et al.  A Wearable Interface for Topological Mapping and Localization in Indoor Environments , 2006, LoCA.

[92]  Luc Van Gool,et al.  Speeded-Up Robust Features (SURF) , 2008, Comput. Vis. Image Underst..

[93]  Weigong Zhang,et al.  A fusion strategy for reliable vehicle positioning utilizing RFID and in-vehicle sensors , 2016, Inf. Fusion.

[94]  Cláudio Marques de Sá Medeiros Uma contribuição ao problema de seleção de modelos neurais usando o princípio de máxima correlação dos erros , 2008 .

[95]  Ajalmar R. da Rocha Neto,et al.  Global location of mobile robots using Artificial Neural Networks in omnidirectional images , 2015 .

[96]  Sher Afzal Khan,et al.  Situation recognition using image moments and recurrent neural networks , 2013, Neural Computing and Applications.

[97]  Danda B. Rawat,et al.  Advances on localization techniques for wireless sensor networks: A survey , 2016, Comput. Networks.

[98]  Angela Ribeiro,et al.  Merge Fuzzy Visual Servoing and GPS-Based Planning to Obtain a Proper Navigation Behavior for a Small Crop-Inspection Robot , 2016, Sensors.

[99]  Gianluigi Ferrari,et al.  A Swarm Intelligence Approach to 3 D Distance-Based Indoor UWB Localization , 2015, EvoApplications.

[100]  Alejandro Rituerto,et al.  Semantic labeling for indoor topological mapping using a wearable catadioptric system , 2014, Robotics Auton. Syst..

[101]  Yan Zhang,et al.  Driver fatigue recognition based on facial expression analysis using local binary patterns , 2015 .

[102]  Sebastian Tilch,et al.  Survey of optical indoor positioning systems , 2011, 2011 International Conference on Indoor Positioning and Indoor Navigation.

[103]  Jose Miguel Puerta,et al.  Comparison between Bayesian network classifiers and SVMs for semantic localization , 2016, Expert Syst. Appl..

[104]  Nello Cristianini,et al.  Large Margin DAGs for Multiclass Classification , 1999, NIPS.

[105]  João Paulo Papa,et al.  EEG signal classification for epilepsy diagnosis via optimum path forest - A systematic assessment , 2014, Neurocomputing.

[106]  Ming-Kuei Hu,et al.  Visual pattern recognition by moment invariants , 1962, IRE Trans. Inf. Theory.

[107]  Paul Newman,et al.  Appearance-only SLAM at large scale with FAB-MAP 2.0 , 2011, Int. J. Robotics Res..

[108]  Eva Arias-de-Reyna A Cooperative Localization Algorithm for UWB Indoor Sensor Networks , 2013, Wirel. Pers. Commun..

[109]  José Ruíz Ascencio,et al.  Visual simultaneous localization and mapping: a survey , 2012, Artificial Intelligence Review.

[110]  Seungryong Kim,et al.  A multi-vision sensor-based fast localization system with image matching for challenging outdoor environments , 2015, Expert Syst. Appl..

[111]  Wail Gueaieb,et al.  A Fuzzy Logic Approach for Indoor Mobile Robot Navigation Using UKF and Customized RFID Communication , 2011, AIS.

[112]  Jimson Mathew,et al.  On Image Forgery Detection Using Two Dimensional Discrete Cosine Transform and Statistical Moments , 2015 .

[113]  Jindong Tan,et al.  Loop Closing Detection in RGB-D SLAM Combining Appearance and Geometric Constraints , 2015, Sensors.