The good of the many outweighs the good of the one: evolutionary multi-objective optimization

We dwell in largely non-technical terms on the essential differences between single-objective optimization and multiple-objective optimization. We argue in particular that single-objective approaches to real-world problems are almost invariably simplifications of the real-problem which make many ideal solutions unreachable to the optimization method. We promote the use of multi-objective optimization methods, particularly those arising from the evolutionary computation community. We point out that the state of the art in the field of evolutionary multi-objective optimization is such that fast and effective techniques are now available which are capable of finding a well-distributed set of diverse trade-off solutions, with little or no more computational effort than sophisticated single-objective optimizers would have taken to find a single one. The resulting diversity of ideas available through a multi-objective approach leads both to the problem-solver being furnished with a better understanding of the space of possible solutions, and consequently to a better final solution to the problem at hand. We end by very briefly charting the history of the field and hinting at the range of published applications and ongoing research issues.

[1]  Russell C. Eberhart,et al.  Multiobjective optimization using dynamic neighborhood particle swarm optimization , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[2]  Andrzej Jaszkiewicz,et al.  Genetic local search for multi-objective combinatorial optimization , 2022 .

[3]  C. Fonseca,et al.  GENETIC ALGORITHMS FOR MULTI-OBJECTIVE OPTIMIZATION: FORMULATION, DISCUSSION, AND GENERALIZATION , 1993 .

[4]  Eduardo F. Morales,et al.  A Multiple objective Ant--Q algorithm for the design of water distribution irrigation networks , 1998 .

[5]  David E. Goldberg,et al.  A niched Pareto genetic algorithm for multiobjective optimization , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[6]  R. S. Laundy,et al.  Multiple Criteria Optimisation: Theory, Computation and Application , 1989 .

[7]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[8]  Chi-Chun Lo,et al.  A multiobjective hybrid genetic algorithm for the capacitated multipoint network design problem , 2000, IEEE Trans. Syst. Man Cybern. Part B.

[9]  A. J. Chipperfield,et al.  H ∞ design of an EMS control system for a maglev vehicle using evolutionary algorithms , 1995 .

[10]  Dragan Savic,et al.  WATER NETWORK REHABILITATION WITH STRUCTURED MESSY GENETIC ALGORITHM , 1997 .

[11]  Helio J. C. Barbosa,et al.  An interactive genetic algorithm with co-evolution of weights for multiobjective problems , 2001 .

[12]  Ni-Bin Chang,et al.  Water pollution control in the river basin by fuzzy genetic algorithm-based multiobjective programming modeling , 1998 .

[13]  David W. Corne,et al.  Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy , 2000, Evolutionary Computation.

[14]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[15]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[16]  H. P. Benson,et al.  Existence of efficient solutions for vector maximization problems , 1978 .

[17]  Kaisa Miettinen,et al.  Nonlinear multiobjective optimization , 1998, International series in operations research and management science.

[18]  David W. Corne,et al.  Properties of an adaptive archiving algorithm for storing nondominated vectors , 2003, IEEE Trans. Evol. Comput..

[19]  M. N. Vrahatis,et al.  Particle swarm optimization method in multiobjective problems , 2002, SAC '02.

[20]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[21]  Günter Rudolph,et al.  Evolutionary Search for Minimal Elements in Partially Ordered Finite Sets , 1998, Evolutionary Programming.

[22]  Peter J. Fleming,et al.  Multiobjective optimization and multiple constraint handling with evolutionary algorithms. I. A unified formulation , 1998, IEEE Trans. Syst. Man Cybern. Part A.

[23]  Kalyanmoy Deb,et al.  MULTI-OBJECTIVE FUNCTION OPTIMIZATION USING NON-DOMINATED SORTING GENETIC ALGORITHMS , 1994 .

[24]  S. Ranji Ranjithan,et al.  Evaluation of the constraint method-based multiobjective evolutionary algorithm (CMEA) for a three-objective optimization problem , 2002 .

[25]  Hajime Kita,et al.  Integration of multi-objective and interactive genetic algorithms and its application to animation design , 1999, IEEE SMC'99 Conference Proceedings. 1999 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No.99CH37028).

[26]  Andrzej Jaszkiewicz,et al.  Pareto Simulated Annealing , 1997 .

[27]  Bernd Freisleben,et al.  Fitness landscape analysis and memetic algorithms for the quadratic assignment problem , 2000, IEEE Trans. Evol. Comput..

[28]  George E. P. Box,et al.  Evolutionary Operation: a Method for Increasing Industrial Productivity , 1957 .

[29]  Dirk Thierens,et al.  A case study of a multiobjective recombinative genetic algorithm with coevolutionary sharing , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[30]  Eckart Zitzler,et al.  Evolutionary algorithms for multiobjective optimization: methods and applications , 1999 .

[31]  Marc Gravel,et al.  Scheduling continuous casting of aluminum using a multiple objective ant colony optimization metaheuristic , 2002, Eur. J. Oper. Res..

[32]  Martin J. Oates,et al.  The Pareto Envelope-Based Selection Algorithm for Multi-objective Optimisation , 2000, PPSN.

[33]  Pallab Dasgupta,et al.  Multiobjective Heuristic Search , 1999, Computational Intelligence.

[34]  K. Stanislaw,et al.  A new constraint tournament selection method for multicriteria optimization using genetic algorithm , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[35]  Ignacio J. Ramirez-Rosado,et al.  Reliability and Costs Optimization for Distribution Networks Expansion Using an Evolutionary Algorithm , 1989 .

[36]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[37]  Günter Rudolph,et al.  Convergence properties of some multi-objective evolutionary algorithms , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[38]  A. E. Eiben,et al.  Evolutionary Programming VII , 1998, Lecture Notes in Computer Science.

[39]  C.A. Coello Coello,et al.  MOPSO: a proposal for multiple objective particle swarm optimization , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[40]  T. T. Binh MOBES : A multiobjective evolution strategy for constrained optimization problems , 1997 .

[41]  Ian C. Parmee,et al.  Agent-based support within an interactive evolutionary design system , 2002, Artificial Intelligence for Engineering Design, Analysis and Manufacturing.

[42]  Chi-Chun Lo,et al.  A multiobjective hybrid genetic algorithm for the capacitated multipoint network design problem , 1999, 1999 IEEE International Conference on Communications (Cat. No. 99CH36311).

[43]  Ian C. Parmee,et al.  Preferences and their application in evolutionary multiobjective optimization , 2002, IEEE Trans. Evol. Comput..

[44]  E. J. Hughes,et al.  Constraint handling with uncertain and noisy multi-objective evolution , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[45]  Gary B. Lamont,et al.  Multiobjective evolutionary algorithms: classifications, analyses, and new innovations , 1999 .

[46]  Lawrence J. Fogel,et al.  Artificial Intelligence through Simulated Evolution , 1966 .

[47]  Martin J. Oates,et al.  Advanced Multi-Objective Evolutionary Algorithms Applied to Two Problems in Telecommunications , 2000 .

[48]  Carlos M. Fonseca,et al.  Multiobjective genetic algorithms with application to control engineering problems. , 1995 .

[49]  N. Biggs THE TRAVELING SALESMAN PROBLEM A Guided Tour of Combinatorial Optimization , 1986 .

[50]  Chelsea C. White,et al.  Multiobjective A* , 1991, JACM.

[51]  Joshua D. Knowles Local-search and hybrid evolutionary algorithms for Pareto optimization , 2002 .

[52]  Peter J. Fleming,et al.  Genetic Algorithms for Multiobjective Optimization: FormulationDiscussion and Generalization , 1993, ICGA.

[53]  Kalyanmoy Deb,et al.  A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective Optimisation: NSGA-II , 2000, PPSN.

[54]  David W. Corne,et al.  No Free Lunch and Free Leftovers Theorems for Multiobjective Optimisation Problems , 2003, EMO.

[55]  Geoffrey T. Parks,et al.  Selective Breeding in a Multiobjective Genetic Algorithm , 1998, PPSN.

[56]  Peter J. Fleming,et al.  Multiobjective gas turbine engine controller design using genetic algorithms , 1996, IEEE Trans. Ind. Electron..

[57]  Marco Laumanns,et al.  On the convergence and diversity-preservation properties of multi-objective evolutionary algorithms , 2001 .

[58]  C. Coello TREATING CONSTRAINTS AS OBJECTIVES FOR SINGLE-OBJECTIVE EVOLUTIONARY OPTIMIZATION , 2000 .

[59]  Peter J. Fleming,et al.  Use of Rules and Preferences for Schedule Builders in Genetic Algorithms for Production Scheduling , 1997, Evolutionary Computing, AISB Workshop.

[60]  Lothar Thiele,et al.  Multiobjective Optimization Using Evolutionary Algorithms - A Comparative Case Study , 1998, PPSN.

[61]  Ian C. Parmee,et al.  Multiobjective Satisfaction within an Interactive Evolutionary Design Environment , 2000, Evolutionary Computation.

[62]  David W. Corne,et al.  Towards Landscape Analyses to Inform the Design of Hybrid Local Search for the Multiobjective Quadratic Assignment Problem , 2002, HIS.

[63]  Patrick D. Surry,et al.  The COMOGA Method: Constrained Optimisation by Multi-Objective Genetic Algorithms , 1997 .

[64]  D. Goldberg,et al.  A multiobjective approach to cost effective long-term groundwater monitoring using an elitist nondominated sorted genetic algorithm with historical data , 2001 .

[65]  J. D. Schaffer,et al.  Some experiments in machine learning using vector evaluated genetic algorithms (artificial intelligence, optimization, adaptation, pattern recognition) , 1984 .

[66]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[67]  Dr. Zbigniew Michalewicz,et al.  How to Solve It: Modern Heuristics , 2004 .

[68]  Hisao Ishibuchi,et al.  Multi-objective genetic local search algorithm , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[69]  Donald E. Grierson,et al.  Pareto‐Optimal Conceptual Design of the Structural Layout of Buildings Using a Multicriteria Genetic Algorithm , 1999 .

[70]  Jamshid Ghaboussi,et al.  A new method of reduced order feedback control using Genetic Algorithms , 1999 .

[71]  Marc Roubens,et al.  Multiple criteria decision making , 1994 .

[72]  H. Abbass,et al.  PDE: a Pareto-frontier differential evolution approach for multi-objective optimization problems , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).