Viewing a forelimb induces widespread cortical activations

Given that prerequisite of activating the mirror neuron system is the preshaping of the hand and its interaction with the object during observation of a reaching-to-grasp-an-object action, the effects of viewing the object, the reaching forelimb and the static hand may obscure the effects of observing the grasping action per se. To disentangle these effects, we employed the (14)C-deoxyglucose quantitative autoradiographic method to map the functional activity in the entire cortex of monkeys (Macaca mulatta) which observed the experimenter performing non-goal-directed (purposeless) forelimb movements towards an object that was previously presented but no longer visible. Thus, our monkeys were exposed to the view of an object, a moving arm and a static hand with extended wrist and fingers. The distribution of metabolic activity was analyzed in 20μm thick brain sections, and two dimensional maps were reconstructed in the occipital operculum, the temporal, the lateral and medial parietal, the lateral and medial frontal, the lateral prefrontal and orbitofrontal cortices, including the cortex within the lunate, superior temporal, lateral, parietoccipital, intraparietal, central, arcuate and principal sulci. Increased metabolic activity, as compared to fixation-control monkeys, was measured in the forelimb representation of the primary motor and somatosensory cortices, the premotor cortices F2 and F5, cingulate motor areas, the secondary somatosensory cortex SII, the posterior intraparietal area 5 and areas TPOc and FST, in the hemisphere contralateral to the moving arm. Moreover, bilateral activations were elicited in areas pre-SMA, 8m, SSA and the somatorecipient area VS, the retroinsula, the auditory belt area CM, motion areas MT, MST, LOP/CIP, area 31, visual areas TEO, V6, V6Av and the parafoveal and peripheral visual representations of areas V1 and V2, respectively. Few parietal, auditory and visual areas were bilaterally depressed. In brief, a surprisingly wide cortical network is recruited even by mere observation of an arm executing goalless movements, which partially overlaps with the cortical network supporting the execution and observation of goal-directed forelimb actions. Interestingly, this overlap concerns mainly lower order sensory-motor rather than higher order association prefrontal and parietal cortices. Our results demonstrate that in order to reveal the net effects specifically induced by observation of a purposeful reaching-to-grasp action, the use of an appropriate control taking into account the effects of viewing the object to be grasped, the reaching arm and the static hand is crucial.

[1]  J. Hyvärinen,et al.  Effects of attention on multiunit responses to vibration in the somatosensory regions of the monkey's brain. , 1982, Electroencephalography and clinical neurophysiology.

[2]  Alexander Kraskov,et al.  Corticospinal Neurons in Macaque Ventral Premotor Cortex with Mirror Properties: A Potential Mechanism for Action Suppression? , 2009, Neuron.

[3]  A. Ishai,et al.  Distributed and Overlapping Representations of Faces and Objects in Ventral Temporal Cortex , 2001, Science.

[4]  D. Pandya,et al.  Dorsolateral prefrontal cortex: comparative cytoarchitectonic analysis in the human and the macaque brain and corticocortical connection patterns , 1999, The European journal of neuroscience.

[5]  M Mishkin,et al.  Visually guided reaching with the forelimb contralateral to a "blind" hemisphere: a metabolic mapping study in monkeys , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[6]  A. Toga,et al.  The Rhesus Monkey Brain in Stereotaxic Coordinates , 1999 .

[7]  John J. Foxe,et al.  The timing and laminar profile of converging inputs to multisensory areas of the macaque neocortex. , 2002, Brain research. Cognitive brain research.

[8]  Helen E. Savaki,et al.  14C-Deoxyglucose mapping of the monkey brain during reaching to visual targets , 1999, Progress in Neurobiology.

[9]  Mara Fabri,et al.  Cortical areas within the lateral sulcus connected to cutaneous representations in areas 3b and 1: A revised interpretation of the second somatosensory area in macaque monkeys , 1995, The Journal of comparative neurology.

[10]  R. Andersen,et al.  Posterior parietal cortex. , 1989, Reviews of oculomotor research.

[11]  L. Sokoloff,et al.  Local cerebral glucose utilization in the normal conscious macaque monkey , 1978, Annals of neurology.

[12]  Katja Fiehler,et al.  How moving objects become animated: The human mirror neuron system assimilates non-biological movement patterns , 2008, Social neuroscience.

[13]  A. Fuchs,et al.  Eye movements evoked by stimulation of frontal eye fields. , 1969, Journal of neurophysiology.

[14]  U. Castiello,et al.  The Human Premotor Cortex Is 'Mirror' Only for Biological Actions , 2004, Current Biology.

[15]  R. Desimone,et al.  Visual properties of neurons in a polysensory area in superior temporal sulcus of the macaque. , 1981, Journal of neurophysiology.

[16]  C Galletti,et al.  Superior area 6 afferents from the superior parietal lobule in the macaque monkey , 1998, The Journal of comparative neurology.

[17]  Johan Wagemans,et al.  Distributed subordinate specificity for bodies, faces, and buildings in human ventral visual cortex , 2010, NeuroImage.

[18]  N. Kanwisher,et al.  The Human Body , 2001 .

[19]  Alice C. Roy,et al.  Hand kinematics during reaching and grasping in the macaque monkey , 2000, Behavioural Brain Research.

[20]  Andrea C. Pierno,et al.  Transfer of interfered motor patterns to self from others , 2006, The European journal of neuroscience.

[21]  Istvan Molnar-Szakacs,et al.  Observing complex action sequences: The role of the fronto-parietal mirror neuron system , 2006, NeuroImage.

[22]  H Burton,et al.  Tactile-spatial and cross-modal attention effects in the second somatosensory and 7b cortical areas of rhesus monkeys. , 1997, Somatosensory & motor research.

[23]  Elisabeth A. Murray,et al.  Supplementary Sensory Area , 1981 .

[24]  M. Goldberg,et al.  Ventral intraparietal area of the macaque: anatomic location and visual response properties. , 1993, Journal of neurophysiology.

[25]  N. Kanwisher,et al.  How Distributed Is Visual Category Information in Human Occipito-Temporal Cortex? An fMRI Study , 2002, Neuron.

[26]  Leslie G. Ungerleider,et al.  Pathways for motion analysis: Cortical connections of the medial superior temporal and fundus of the superior temporal visual areas in the macaque , 1990, The Journal of comparative neurology.

[27]  Denise A. Minnebusch,et al.  Neuropsychological mechanisms of visual face and body perception , 2009, Neuroscience & Biobehavioral Reviews.

[28]  C. Keysers,et al.  The Observation and Execution of Actions Share Motor and Somatosensory Voxels in all Tested Subjects: Single-Subject Analyses of Unsmoothed fMRI Data , 2008, Cerebral cortex.

[29]  H. Sakata,et al.  Selectivity for the shape, size, and orientation of objects for grasping in neurons of monkey parietal area AIP. , 2000, Journal of neurophysiology.

[30]  P. Downing,et al.  Within‐subject reproducibility of category‐specific visual activation with functional MRI , 2005, Human brain mapping.

[31]  Peter Janssen,et al.  Anterior Regions of Monkey Parietal Cortex Process Visual 3D Shape , 2007, Neuron.

[32]  J. Mazziotta,et al.  A Locus in Human Extrastriate Cortex for Visual Shape Analysis , 1997, Journal of Cognitive Neuroscience.

[33]  Leonardo Fogassi,et al.  Mirror neurons encode the subjective value of an observed action , 2012, Proceedings of the National Academy of Sciences.

[34]  G. Rizzolatti,et al.  Mirror Neurons Differentially Encode the Peripersonal and Extrapersonal Space of Monkeys , 2009, Science.

[35]  G. Rizzolatti,et al.  Localization of grasp representations in humans by PET: 1. Observation versus execution , 1996, Experimental Brain Research.

[36]  D I Perrett,et al.  Frameworks of analysis for the neural representation of animate objects and actions. , 1989, The Journal of experimental biology.

[37]  G. G. Gregoriou,et al.  Functional imaging of the intraparietal cortex during saccades to visual and memorized targets , 2006, NeuroImage.

[38]  K. Grill-Spector,et al.  Neural representations of faces and limbs neighbor in human high-level visual cortex: evidence for a new organization principle , 2011, Psychological Research.

[39]  Keiji Tanaka Mechanisms of visual object recognition: monkey and human studies , 1997, Current Opinion in Neurobiology.

[40]  G. Rizzolatti,et al.  Understanding motor events: a neurophysiological study , 2004, Experimental Brain Research.

[41]  H. Sakata,et al.  Neural mechanisms of visual guidance of hand action in the parietal cortex of the monkey. , 1995, Cerebral cortex.

[42]  C. Colby,et al.  Heterogeneity of extrastriate visual areas and multiple parietal areas in the Macaque monkey , 1991, Neuropsychologia.

[43]  K. Zilles,et al.  Functional neuroanatomy of the primate isocortical motor system , 2000, Anatomy and Embryology.

[44]  D. V. van Essen,et al.  Mapping of architectonic subdivisions in the macaque monkey, with emphasis on parieto‐occipital cortex , 2000, The Journal of comparative neurology.

[45]  Nikos K. Logothetis,et al.  Three-Dimensional Shape Representation in Monkey Cortex , 2002, Neuron.

[46]  L. Sokoloff,et al.  Measurement of Free Glucose Turnover in Brain , 1980, Journal of neurochemistry.

[47]  K. Rockland,et al.  Cortical connections of the occipital lobe in the rhesus monkey: Interconnections between areas 17, 18, 19 and the superior temporal sulcus , 1981, Brain Research.

[48]  Leslie G. Ungerleider,et al.  Visual topography of area TEO in the macaque , 1991, The Journal of comparative neurology.

[49]  L Krubitzer,et al.  A redefinition of somatosensory areas in the lateral sulcus of macaque monkeys , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[50]  G. Rizzolatti,et al.  The functional role of the parieto-frontal mirror circuit: interpretations and misinterpretations , 2010, Nature Reviews Neuroscience.

[51]  Leslie G. Ungerleider,et al.  Cortical connections of inferior temporal area TEO in macaque monkeys , 1993, The Journal of comparative neurology.

[52]  Talma Hendler,et al.  Neural representations of kinematic laws of motion: Evidence for action-perception coupling , 2007, Proceedings of the National Academy of Sciences.

[53]  S S Hsiao,et al.  Effects of selective attention on spatial form processing in monkey primary and secondary somatosensory cortex. , 1993, Journal of neurophysiology.

[54]  V. Raos,et al.  Mental Simulation of Action in the Service of Action Perception , 2007, The Journal of Neuroscience.

[55]  Ankoor S. Shah,et al.  Auditory Cortical Neurons Respond to Somatosensory Stimulation , 2003, The Journal of Neuroscience.

[56]  Claudio Galletti,et al.  Functional imaging of the parietal cortex during action execution and observation. , 2009, Cerebral cortex.

[57]  Ehud Zohary,et al.  Dissociation between Ventral and Dorsal fMRI Activation during Object and Action Recognition , 2005, Neuron.

[58]  Vassilis Raos,et al.  Grasping in the dark activates early visual cortices. , 2011, Cerebral cortex.

[59]  Leah Krubitzer,et al.  Cortical connections of the second somatosensory area and the parietal ventral area in macaque monkeys , 2003, The Journal of comparative neurology.

[60]  M. Petrides The Orbitofrontal Cortex: Novelty, Deviation from Expectation, and Memory , 2007, Annals of the New York Academy of Sciences.

[61]  H. Ogawa,et al.  Neural activities in the fronto-opercular cortex of macaque monkeys during tasting and mastication. , 1994, The Japanese journal of physiology.

[62]  C. Frith,et al.  Dissociable neural pathways for the perception and recognition of expressive and instrumental gestures , 2004, Neuropsychologia.

[63]  Lauretta Passarelli,et al.  Cortical Connections of Area V6Av in the Macaque: A Visual-Input Node to the Eye/Hand Coordination System , 2011, The Journal of Neuroscience.

[64]  Georgia G Gregoriou,et al.  When vision guides movement: a functional imaging study of the monkey brain , 2003, NeuroImage.

[65]  G. Rizzolatti,et al.  Action observation activates premotor and parietal areas in a somatotopic manner: an fMRI study , 2001, The European journal of neuroscience.

[66]  T. Allison,et al.  Social perception from visual cues: role of the STS region , 2000, Trends in Cognitive Sciences.

[67]  J. Decety,et al.  From the perception of action to the understanding of intention , 2001, Nature reviews. Neuroscience.

[68]  P. Strick,et al.  Spinal Cord Terminations of the Medial Wall Motor Areas in Macaque Monkeys , 1996, The Journal of Neuroscience.

[69]  C. Schroeder,et al.  Somatosensory input to auditory association cortex in the macaque monkey. , 2001, Journal of neurophysiology.

[70]  Istvan Ulbert,et al.  Sources of Somatosensory Input to the Caudal Belt Areas of Auditory Cortex , 2007, Perception.

[71]  H. Barbas,et al.  Specialized Elements of Orbitofrontal Cortex in Primates , 2007, Annals of the New York Academy of Sciences.

[72]  John H. R. Maunsell,et al.  The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[73]  C. Gross,et al.  Representations of faces and body parts in macaque temporal cortex: a functional MRI study. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[74]  Georgia G Gregoriou,et al.  The Place Code of Saccade Metrics in the Lateral Bank of the Intraparietal Sulcus , 2010, The Journal of Neuroscience.

[75]  V. Raos,et al.  Saccade-Related Information in the Superior Temporal Motion Complex: Quantitative Functional Mapping in the Monkey , 2007, The Journal of Neuroscience.

[76]  J. Decety,et al.  Top down effect of strategy on the perception of human biological motion: a pet investigation. , 1998, Cognitive neuropsychology.

[77]  N. Logothetis,et al.  A combined MRI and histology atlas of the rhesus monkey brain in stereotaxic coordinates , 2007 .

[78]  Leslie G. Ungerleider,et al.  Cortical connections of visual area MT in the macaque , 1986, The Journal of comparative neurology.

[79]  T. Sawaguchi,et al.  Application of the GABA antagonist bicuculline to the premotor cortex reduces the ability to withhold reaching movements by well-trained monkeys in visually guided reaching task. , 1996, Journal of neurophysiology.

[80]  Amanda L. Kaas,et al.  Distinct cortical networks for the detection and identification of human body , 2009, NeuroImage.

[81]  A. P. Georgopoulos,et al.  Movement parameters and neural activity in motor cortex and area 5. , 1994, Cerebral cortex.

[82]  Leonardo Fogassi,et al.  Motor functions of the parietal lobe , 2005, Current Opinion in Neurobiology.

[83]  M. Mesulam,et al.  Insula of the old world monkey. III: Efferent cortical output and comments on function , 1982, The Journal of comparative neurology.

[84]  T. Paus,et al.  Brain networks involved in viewing angry hands or faces. , 2006, Cerebral cortex.

[85]  Rebecca F. Schwarzlose,et al.  Separate Face and Body Selectivity on the Fusiform Gyrus , 2005, The Journal of Neuroscience.

[86]  D. Perrett,et al.  Responses of Anterior Superior Temporal Polysensory (STPa) Neurons to Biological Motion Stimuli , 1994, Journal of Cognitive Neuroscience.

[87]  T. Hackett,et al.  Multisensory convergence in auditory cortex, I. Cortical connections of the caudal superior temporal plane in macaque monkeys , 2007, The Journal of comparative neurology.

[88]  Leslie G. Ungerleider,et al.  Multiple visual areas in the caudal superior temporal sulcus of the macaque , 1986, The Journal of comparative neurology.

[89]  A. Saygin Superior temporal and premotor brain areas necessary for biological motion perception. , 2007, Brain : a journal of neurology.

[90]  Jessica K. Hodgins,et al.  Exploring the neural correlates of goal-directed action and intention understanding , 2011, NeuroImage.

[91]  H. Savaki,et al.  How do we understand tHe actions of otHers ? by mental simulation , not mirroring , 2012 .

[92]  Leonardo Fogassi,et al.  Anterior intraparietal cortex codes complexity of observed hand movements , 2010, Brain Research Bulletin.

[93]  R. Leiguarda,et al.  The neural substrate of gesture recognition , 2008, Neuropsychologia.

[94]  Simon B Eickhoff,et al.  Brain regions involved in human movement perception: A quantitative voxel‐based meta‐analysis , 2012, Human brain mapping.

[95]  J. Haxby,et al.  fMRI Responses to Video and Point-Light Displays of Moving Humans and Manipulable Objects , 2003, Journal of Cognitive Neuroscience.

[96]  G. Rizzolatti,et al.  Neurophysiological mechanisms underlying the understanding and imitation of action , 2001, Nature Reviews Neuroscience.

[97]  C. Cavina-Pratesi,et al.  Dissociable neural responses to hands and non-hand body parts in human left extrastriate visual cortex. , 2010, Journal of neurophysiology.

[98]  Kiyotaka Nemoto,et al.  The neural network for the mirror system and mentalizing in normally developed children: an fMRI study , 2004, Neuroreport.

[99]  A. J. Mistlin,et al.  Visual analysis of body movements by neurones in the temporal cortex of the macaque monkey: A preliminary report , 1985, Behavioural Brain Research.

[100]  D. V. van Essen,et al.  Corticocortical connections of visual, sensorimotor, and multimodal processing areas in the parietal lobe of the macaque monkey , 2000, The Journal of comparative neurology.

[101]  K. Brodmann Vergleichende Lokalisationslehre der Großhirnrinde : in ihren Prinzipien dargestellt auf Grund des Zellenbaues , 1985 .

[102]  T. Allison,et al.  Functional anatomy of biological motion perception in posterior temporal cortex: an FMRI study of eye, mouth and hand movements. , 2005, Cerebral cortex.

[103]  M. Sereno,et al.  Point-Light Biological Motion Perception Activates Human Premotor Cortex , 2004, The Journal of Neuroscience.

[104]  H. Kuypers,et al.  Premotor cortical ablations in monkeys: contralateral changes in visually guided reaching behavior. , 1977, Science.

[105]  C. Galletti,et al.  Functional Demarcation of a Border Between Areas V6 and V6A in the Superior Parietal Gyrus of the Macaque Monkey , 1996, The European journal of neuroscience.

[106]  Aina Puce,et al.  Electrophysiology and brain imaging of biological motion. , 2003, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[107]  C. Robinson,et al.  Organization of the S II Parietal Cortex , 1981 .

[108]  C. Robinson,et al.  Organization of somatosensory receptive fields in cortical areas 7b, retroinsula, postauditory and granular insula of M. fascicularis , 1980, The Journal of comparative neurology.

[109]  Aina Puce,et al.  Common and distinct brain activation to viewing dynamic sequences of face and hand movements , 2007, NeuroImage.

[110]  T. Flash,et al.  Neuronal encoding of human kinematic invariants during action observation. , 2010, Cerebral cortex.

[111]  R. Andersen,et al.  Visual receptive field organization and cortico‐cortical connections of the lateral intraparietal area (area LIP) in the macaque , 1990, The Journal of comparative neurology.

[112]  Gian Luca Romani,et al.  Neural systems underlying observation of humanly impossible movements: an FMRI study. , 2005, Cerebral cortex.

[113]  M Petrides,et al.  Architecture and connections of retrosplenial area 30 in the rhesus monkey (macaca mulatta). , 1999, The European journal of neuroscience.

[114]  Hideo Sakata,et al.  Short-Term Memory and Perceptual Decision for Three-Dimensional Visual Features in the Caudal Intraparietal Sulcus (Area CIP) , 2003, The Journal of Neuroscience.

[115]  D. Perrett,et al.  Single cell integration of animate form, motion and location in the superior temporal cortex of the macaque monkey. , 2004, Cerebral cortex.

[116]  David C. Van Essen,et al.  Application of Information Technology: An Integrated Software Suite for Surface-based Analyses of Cerebral Cortex , 2001, J. Am. Medical Informatics Assoc..

[117]  B. Bertenthal,et al.  Does Perception of Biological Motion Rely on Specific Brain Regions? , 2001, NeuroImage.

[118]  C. Weiller,et al.  Age-independent activation in areas of the mirror neuron system during action observation and action imagery. A fMRI study. , 2010, Restorative neurology and neuroscience.

[119]  E. Niebur,et al.  Growth patterns in the developing brain detected by using continuum mechanical tensor maps , 2022 .

[120]  S. Edelman,et al.  Human Brain Mapping 6:316–328(1998) � A Sequence of Object-Processing Stages Revealed by fMRI in the Human Occipital Lobe , 2022 .

[121]  J. Kalaska,et al.  Cerebral cortical mechanisms of reaching movements. , 1992, Science.

[122]  G. Rizzolatti,et al.  Premotor cortex and the recognition of motor actions. , 1996, Brain research. Cognitive brain research.

[123]  T. R. Scott,et al.  Gustatory responses in the frontal opercular cortex of the alert cynomolgus monkey. , 1986, Journal of neurophysiology.

[124]  J. Decety,et al.  The effects of learning and intention on the neural network involved in the perception of meaningless actions. , 1999, Brain : a journal of neurology.

[125]  G. Orban,et al.  Visual Motion Processing Investigated Using Contrast Agent-Enhanced fMRI in Awake Behaving Monkeys , 2001, Neuron.

[126]  P. Goldman-Rakic,et al.  Posterior parietal cortex in rhesus monkey: I. Parcellation of areas based on distinctive limbic and sensory corticocortical connections , 1989, The Journal of comparative neurology.

[127]  R. Andersen,et al.  Memory related motor planning activity in posterior parietal cortex of macaque , 1988, Experimental Brain Research.

[128]  C. Bruce,et al.  Primate frontal eye fields. I. Single neurons discharging before saccades. , 1985, Journal of neurophysiology.

[129]  Cinzia Di Dio,et al.  The neural correlates of velocity processing during the observation of a biological effector in the parietal and premotor cortex , 2013, NeuroImage.

[130]  P. Downing,et al.  The neural basis of visual body perception , 2007, Nature Reviews Neuroscience.

[131]  S. Zeki Functional organization of a visual area in the posterior bank of the superior temporal sulcus of the rhesus monkey , 1974, The Journal of physiology.

[132]  R. Malach,et al.  Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[133]  John H. R. Maunsell,et al.  Topographic organization of the middle temporal visual area in the macaque monkey: Representational biases and the relationship to callosal connections and myeloarchitectonic boundaries , 1987, The Journal of comparative neurology.

[134]  C. Galletti,et al.  Functional Properties of Neurons in the Anterior Bank of the Parieto‐occipital Sulcus of the Macaque Monkey , 1991, The European journal of neuroscience.

[135]  E T Rolls,et al.  Gustatory responses of single neurons in the insula of the macaque monkey. , 1990, Journal of neurophysiology.

[136]  C. Gross,et al.  Topographical organization of cortical afferents to extrastriate visual area PO in the macaque: A dual tracer study , 1988, The Journal of comparative neurology.

[137]  N. Kanwisher,et al.  Location and spatial profile of category‐specific regions in human extrastriate cortex , 2006, Human brain mapping.

[138]  M. Iacoboni,et al.  Getting a grip on other minds: Mirror neurons, intention understanding, and cognitive empathy , 2006, Social Neuroscience.

[139]  Keiji Tanaka,et al.  Polysensory properties of neurons in the anterior bank of the caudal superior temporal sulcus of the macaque monkey. , 1988, Journal of neurophysiology.

[140]  G. Rizzolatti,et al.  Architecture of superior and mesial area 6 and the adjacent cingulate cortex in the macaque monkey , 1991, The Journal of comparative neurology.

[141]  G. G. Gregoriou,et al.  Frontal cortical areas of the monkey brain engaged in reaching behavior: A 14C-deoxyglucose imaging study , 2005, NeuroImage.

[142]  N. A. Borghese,et al.  Different Brain Correlates for Watching Real and Virtual Hand Actions , 2001, NeuroImage.

[143]  M. Mesulam,et al.  Insula of the old world monkey. Architectonics in the insulo‐orbito‐temporal component of the paralimbic brain , 1982, The Journal of comparative neurology.

[144]  D. Pandya,et al.  Intrinsic connections and architectonics of posterior parietal cortex in the rhesus monkey , 1982, The Journal of comparative neurology.

[145]  P. Sinha,et al.  Functional neuroanatomy of biological motion perception in humans , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[146]  Elisabeth A. Murray,et al.  Supplementary Sensory Area The Medial Parietal Cortex in the Monkey , 1981 .

[147]  Aina Puce,et al.  Viewing the motion of human body parts activates different regions of premotor, temporal, and parietal cortex , 2004, NeuroImage.

[148]  Elena Borra,et al.  Architectonic organization of the inferior parietal convexity of the macaque monkey , 2006, The Journal of comparative neurology.

[149]  Kalanit Grill-Spector,et al.  Sparsely-distributed organization of face and limb activations in human ventral temporal cortex , 2010, NeuroImage.

[150]  H Burton,et al.  Somatotopographic organization in the second somatosensory area of M. fascicularis , 1980, The Journal of comparative neurology.

[151]  C. Galletti,et al.  The cortical connections of area V6: an occipito‐parietal network processing visual information , 2001, The European journal of neuroscience.

[152]  Michael Erb,et al.  Visual features of an observed agent do not modulate human brain activity during action observation , 2009, NeuroImage.

[153]  R. Blake,et al.  Brain Areas Involved in Perception of Biological Motion , 2000, Journal of Cognitive Neuroscience.

[154]  Christian Keysers,et al.  The anthropomorphic brain: The mirror neuron system responds to human and robotic actions , 2007, NeuroImage.

[155]  Dora E Angelaki,et al.  Macaque Parieto-Insular Vestibular Cortex: Responses to Self-Motion and Optic Flow , 2010, Journal of Neuroscience.

[156]  C. Gross,et al.  Neural representations of faces and body parts in macaque and human cortex: a comparative FMRI study. , 2009, Journal of neurophysiology.

[157]  Carlo Adolfo Porro,et al.  Neural substrates for observing and imagining non-object-directed actions , 2008, Social neuroscience.

[158]  L Leinonen,et al.  Functional properties of neurones in the parietal retroinsular cortex in awake monkey. , 1980, Acta physiologica Scandinavica.

[159]  E Vaudano,et al.  Injury induced c‐Jun expression and phosphorylation in the dopaminergic nigral neurons of the rat: correlation with neuronal death and modulation by glial‐cell‐line‐derived neurotrophic factor , 2001, The European journal of neuroscience.

[160]  Ehud Zohary,et al.  A Mirror Representation of Others' Actions in the Human Anterior Parietal Cortex , 2006, The Journal of Neuroscience.

[161]  Vassilis Raos,et al.  The Spinal Substrate of the Suppression of Action during Action Observation , 2010, The Journal of Neuroscience.

[162]  S. Aglioti,et al.  The body in the brain revisited , 2009, Experimental Brain Research.

[163]  Jon H Kaas,et al.  Anatomical and functional organization of somatosensory areas of the lateral fissure of the New World titi monkey (Callicebus moloch) , 2004, The Journal of comparative neurology.

[164]  H. Burton,et al.  Somatic submodality distribution within the second somatosensory (SII), 7b, retroinsular, postauditory, and granular insular cortical areas of M. fascicularis , 1980, The Journal of comparative neurology.

[165]  D C Van Essen,et al.  Functional properties of neurons in middle temporal visual area of the macaque monkey. I. Selectivity for stimulus direction, speed, and orientation. , 1983, Journal of neurophysiology.

[166]  G. Rizzolatti,et al.  Action recognition in the premotor cortex. , 1996, Brain : a journal of neurology.

[167]  K. Tanaka,et al.  Analysis of object motion in the ventral part of the medial superior temporal area of the macaque visual cortex. , 1993, Journal of neurophysiology.

[168]  D. Pandya,et al.  Comparative cytoarchitectonic analysis of the human and the macaque ventrolateral prefrontal cortex and corticocortical connection patterns in the monkey , 2002, The European journal of neuroscience.

[169]  G. Rizzolatti,et al.  View-Based Encoding of Actions in Mirror Neurons of Area F5 in Macaque Premotor Cortex , 2011, Current Biology.

[170]  D. Perrett,et al.  Integration of form and motion in the anterior superior temporal polysensory area (STPa) of the macaque monkey. , 1996, Journal of neurophysiology.

[171]  P. Downing,et al.  Selectivity for the human body in the fusiform gyrus. , 2005, Journal of neurophysiology.

[172]  Alan C. Evans,et al.  Specific Involvement of Human Parietal Systems and the Amygdala in the Perception of Biological Motion , 1996, The Journal of Neuroscience.

[173]  Munetaka Shidara,et al.  Encoding of reward expectation by monkey anterior insular neurons. , 2012, Journal of neurophysiology.

[174]  M. Reivich,et al.  THE [14C]DEOXYGLUCOSE METHOD FOR THE MEASUREMENT OF LOCAL CEREBRAL GLUCOSE UTILIZATION: THEORY, PROCEDURE, AND NORMAL VALUES IN THE CONSCIOUS AND ANESTHETIZED ALBINO RAT 1 , 1977, Journal of neurochemistry.

[175]  Francesca Ugolotti Serventi,et al.  Ventral premotor and inferior parietal cortices make distinct contribution to action organization and intention understanding. , 2010, Cerebral cortex.

[176]  E. G. Jones,et al.  Intracortical connectivity of architectonic fields in the somatic sensory, motor and parietal cortex of monkeys , 1978, The Journal of comparative neurology.

[177]  Helen E. Savaki,et al.  Observation of action: grasping with the mind's hand , 2004, NeuroImage.