Antarctic dry valleys: Microclimate zonation, variable geomorphic processes, and implications for assessing climate change on Mars

The Antarctic Dry Valleys (ADV) are generally classified as a hyper-arid, cold-polar desert. The region has long been considered an important terrestrial analog for Mars because of its generally cold and dry climate and because it contains a suite of landforms at macro-, meso-, and microscales that closely resemble those occurring on the martian surface. The extreme hyperaridity of both Mars and the ADV has focused attention on the importance of salts and brines on soil development, phase transitions from liquid water to water ice, and ultimately, on process geomorphology and landscape evolution at a range of scales on both planets. The ADV can be subdivided into three microclimate zones: a coastal thaw zone, an inland mixed zone, and a stable upland zone; zones are defined on the basis of summertime measurements of atmospheric temperature, soil moisture, and relative humidity. Subtle variations in these climate parameters result in considerable differences in the distribution and morphology of: (1) macroscale features (e.g., slopes and gullies); (2) mesoscale features (e.g., polygons, including ice-wedge, sand-wedge, and sublimation-type polygons, as well as viscous-flow features, including solifluction lobes, gelifluction lobes, and debris-covered glaciers); and (3) microscale features (e.g., rock-weathering processes/features, including salt weathering, wind erosion, and surface pitting). Equilibrium landforms are those features that formed in balance with environmental conditions within fixed microclimate zones. Some equilibrium landforms, such as sublimation polygons, indicate the presence of extensive near-surface ice; identification of similar landforms on Mars may also provide a basis for detecting the location of shallow ice. Landforms that today appear in disequilibrium with local microclimate conditions in the ADV signify past and/or ongoing shifts in climate zonation; understanding these shifts is assisting in the documentation of the climate record for the ADV. A similar type of landform analysis can be applied to the surface of Mars where analogous microclimates and equilibrium landforms occur (1) in a variety of local environments, (2) in different latitudinal bands, and (3) in units of different ages. Documenting the nature and evolution of the ADV microclimate zones and their associated geomorphic processes is helping to provide a quantitative framework for assessing the evolution of climate on Mars.

[1]  J. Head,et al.  Microclimate Zones in the Dry Valleys of Antarctica: Implications for Landscape Evolution and Climate Change on Mars , 2004 .

[2]  Ingmar Borgström Basal ice temperatures during late Weichselian deglaciation: comparison of landform assemblages in west-central Sweden , 1999, Annals of Glaciology.

[3]  M. Malin,et al.  Evidence for recent groundwater seepage and surface runoff on Mars. , 2000, Science.

[4]  J. Tison,et al.  Preservation of Miocene glacier ice in East Antarctica , 1995, Nature.

[5]  F. Stuart,et al.  Cosmogenic 3He concentrations in ancient flood deposits from the Coombs Hills, northern Dry Valleys, East Antarctica: interpreting exposure ages and erosion rates , 2005 .

[6]  P. A. J. Englert,et al.  Distribution of Hydrogen in the Near Surface of Mars: Evidence for Subsurface Ice Deposits , 2002, Science.

[7]  B. Clark Implications of abundant hygroscopic minerals in the Martian regolith , 1978 .

[8]  I. B. Campbell,et al.  THE SALTS IN ANTARCTIC SOILS, THEIR DISTRIBUTION AND RELATIONSHIP TO SOIL PROCESSES , 1977 .

[9]  T. Davis Permafrost: A guide to Frozen Ground in Transition , 2001 .

[10]  B. Clark,et al.  The salts of Mars , 1981 .

[11]  R. Wieler,et al.  The oldest ice on Earth in Beacon Valley, Antarctica: new evidence from surface exposure dating , 2000 .

[12]  N. Lancaster Flux of Eolian Sediment in the McMurdo Dry Valleys, Antarctica: A Preliminary Assessment , 2002 .

[13]  J. Bockheim,et al.  Origins of sulphate in Antarctic dry-valley soils as deduced from anomalous 17O compositions , 2000, Nature.

[14]  P. Doran,et al.  Spatial climatic variation and its control on glacier equilibrium line altitude in Taylor Valley, Antarctica , 1999 .

[15]  Richard W. Zurek,et al.  Comparative aspects of the climate of Mars: an introduction to the current atmosphere. , 1992 .

[16]  D. Wall,et al.  Salt tolerance and survival thresholds for two species of Antarctic soil nematodes , 2006, Polar Biology.

[17]  J. Head,et al.  Mars at very low obliquity: Atmospheric collapse and the fate of volatiles , 2005 .

[18]  James W. Head,et al.  Martian gullies in the southern mid-latitudes of Mars: Evidence for climate-controlled formation of young fluvial features based upon local and global topography , 2007 .

[19]  J. Staiger,et al.  Plio-Pleistocene history of Ferrar Glacier, Antarctica: Implications for climate and ice sheet stability , 2006 .

[20]  W. Schwerdtfeger,et al.  Weather and climate of the Antarctic , 1984 .

[21]  J. Head,et al.  Quantifying low rates of summertime sublimation for buried glacier ice in Beacon Valley, Antarctica , 2006, Antarctic Science.

[22]  James W. Head,et al.  Mars: Nature and evolution of young latitude‐dependent water‐ice‐rich mantle , 2002 .

[23]  D. Crown,et al.  The role of arcuate ridges and gullies in the degradation of craters in the Newton Basin region of Mars , 2005 .

[24]  D. Burt,et al.  Electrically conducting, Ca‐rich brines, rather than water, expected in the Martian subsurface , 2003 .

[25]  R. Dmowska,et al.  International Geophysics Series , 1992 .

[26]  I. B. Campbell,et al.  Weathering Processes in Arid Cryosols , 2004 .

[27]  J. R. Mackay The Widths of Ice Wedges , 1977 .

[28]  A. K. Baird,et al.  Is the Martian lithosphere sulfur rich , 1979 .

[29]  I. B. Campbell,et al.  Antarctica: soils, weathering processes and environment I.B. Campbell and G.G.C. Claridge Elsevier Science Publishers, Amsterdam & New York (1987). 406 pages. Dfl 220. ISBN 0 444 42784 8. , 1989, Antarctic Science.

[30]  D. Mckay,et al.  Chemical Weathering and Diagenesis of a Cold Desert Soil from Wright Valley, Antarctica: an Analog of Martian Weathering Processes , 1983 .

[31]  M. Kurz,et al.  Constraints on age, erosion, and uplift of Neogene glacial deposits in the Transantarctic Mountains determined from in situ cosmogenic 10Be and 26Al , 1995 .

[32]  R. Arvidson,et al.  Differential aeolian redistribution rates on Mars , 1979, Nature.

[33]  K. Herkenhoff,et al.  Sulfate-rich Soils Exposed by Spirit Rover at Multiple Locations in Gusev Crater on Mars , 2007 .

[34]  Michael H. Hecht,et al.  Metastability of liquid water on Mars , 2001 .

[35]  A. Lachenbruch Mechanics of Thermal Contraction Cracks and Ice-Wedge Polygons in Permafrost , 1962 .

[36]  G. Brass,et al.  Stability of brines on Mars , 1980 .

[37]  J. Beek,et al.  Developments in Soil Science , 2019, Global Change and Forest Soils.

[38]  L. Pel,et al.  Simulating the growth of tafoni , 2004 .

[39]  B. Hallet,et al.  Resurfacing time of terrestrial surfaces by the formation and maturation of polygonal patterned ground , 2003 .

[40]  James W. Head,et al.  Periods of active permafrost layer formation during the geological history of Mars: Implications for circum-polar and mid-latitude surface processes , 2008 .

[41]  Steven W. Squyres,et al.  Geochemical modeling of evaporation processes on Mars: Insight from the sedimentary record at Meridiani Planum , 2005 .

[42]  M. Kreslavsky,et al.  North–south topographic slope asymmetry on Mars: Evidence for insolation‐related erosion at high obliquity , 2003 .

[43]  M. Summerfield,et al.  Cosmogenic isotope data support previous evidence of extremely low rates of denudation in the Dry Valleys region, southern Victoria Land, Antarctica , 1999, Geological Society, London, Special Publications.

[44]  N. Bridges,et al.  Northern hemisphere Martian gullies and mantled terrain: Implications for near‐surface water migration in Mars' recent past , 2006 .

[45]  Robert B. Leighton,et al.  The Surface of Mars , 2007 .

[46]  G. Denton,et al.  Miocene and Pliocene paleoclimate of the Dry Valleys region, Southern Victoria land: a geomorphological approach , 1996 .

[47]  J. Head,et al.  Weathering Pits in the Antarctic Dry Valleys: Insolation-induced Heating and Melting, and Applications to Mars , 2005 .

[48]  James W. Head,et al.  North polar cap of Mars: Polar layered deposit characterization and identification of a fundamental climate signal , 2005 .

[49]  Bernard H. Foing,et al.  Tropical to mid-latitude snow and ice accumulation, flow and glaciation on Mars , 2005, Nature.

[50]  G. Marion A theoretical evaluation of mineral stability in Don Juan Pond, Wright Valley, Victoria Land , 1997, Antarctic Science.

[51]  Kenneth L. Jones,et al.  The geology of the Viking Lander 1 site , 1977 .

[52]  C. B. Farmer Liquid water on Mars , 1976, Icarus.

[53]  Stephen R. Lewis,et al.  Improved general circulation models of the Martian atmosphere from the surface to above 80 km , 1999 .

[54]  G. Denton,et al.  Miocene-Pliocene-Pleistocene glacial history of Arena Valley, Quartermain Mountains, Antarctica , 1993 .

[55]  F Forget,et al.  Formation of Glaciers on Mars by Atmospheric Precipitation at High Obliquity , 2006, Science.

[56]  J. Dohm,et al.  Morphogenesis of Antarctic Paleosols: Martian Analogue , 2001 .

[57]  S. Wall Analysis of condensates formed at the Viking 2 lander site - The first winter , 1981 .

[58]  M. Mellon,et al.  Laboratory simulations of Mars aqueous geochemistry , 2004 .

[59]  B. Csathó,et al.  Groundwater seeps in Taylor Valley Antarctica: an example of a subsurface melt event , 2005, Annals of Glaciology.

[60]  James W. Head,et al.  Recent high‐latitude icy mantle in the northern plains of Mars: Characteristics and ages of emplacement , 2006 .

[61]  M. Selby Slopes and Their Development in an Ice-Free, Arid Area of Antarctica , 1971 .

[62]  M. Selby Transverse erosional marks on ventifacts from Antarctica , 1977 .

[63]  H. J. Moore,et al.  Overview of the Mars Pathfinder mission and assessment of landing site predictions. , 1997, Science.

[64]  G. McMurty,et al.  Life in the calcium chloride environment of Don Juan Pond, Antarctica , 1979, Nature.

[65]  M. Drake,et al.  A review of meteorite evidence for the timing of magmatism and of surface or near-surface liquid water on Mars , 2005 .

[66]  J. Kleman,et al.  Geomorphic Evidence for Late Glacial Ice Dynamics on Southern Baffin Island and in Outer Hudson Strait, Nunavut, Canada , 2001 .

[67]  C. Leovy,et al.  Weather and climate on Mars , 2001, Nature.

[68]  J. Kleman,et al.  Frozen-bed Fennoscandian and Laurentide ice sheets during the Last Glacial Maximum , 1999, Nature.

[69]  J. Gooding Soil mineralogy and chemistry on Mars - Possible clues from salts and clays in SNC meteorites , 1992 .

[70]  S. Maurice,et al.  Spatial relationships between patterned ground and ground ice detected by the Neutron Spectrometer on Mars , 2004 .

[71]  David C. Catling,et al.  Alteration Assemblages in Martian Meteorites: Implications for Near-Surface Processes , 2001 .

[72]  J. Conca,et al.  Capillary moisture flow and the origin of cavernous weathering in dolerites of Bull Pass, Antarctica , 1987 .

[73]  D. Sugden,et al.  East Antarctic Ice Sheet sensitivity to Pliocene climatic change from a Dry Valleys perspective , 1993 .

[74]  D. Vaniman,et al.  Transformations of Mg- and Ca-sulfate hydrates in Mars regolith , 2006 .

[75]  A. Meigs,et al.  Long-term glacial erosion of active mountain belts: Example of the Chugach-St. Elias Range, Alaska , 2004 .

[76]  B. Hallet,et al.  Buoyancy Forces Induced by Freeze-thaw in the Active Layer: Implications for Diapirism and Soil Circulation , 2020 .

[77]  M. Selby Some solifluction surfaces and terraces in the ice-free valleys of Victoria Land, Antarctica , 1971 .

[78]  M. Selby,et al.  Rock slope development in McMurdo oasis, Antarctica, and implications for interpretations of glacial history , 1990 .

[79]  Carol R. Stoker,et al.  Overview of the Mars Pathfinder Mission: Launch through landing, surface operations, data sets, and science results , 1999 .

[80]  M. Mellon,et al.  Mars Global Surveyor Thermal Emission Spectrometer experiment: Investigation description and surface science results , 2001 .

[81]  Michael H. Carr,et al.  Water on Mars , 1987, Nature.

[82]  J. Kargel,et al.  Small‐scale Martian polygonal terrain: Implications for liquid surface water , 2001 .

[83]  D. Marchant,et al.  Quantifying sulfate components and their variations in soils of the McMurdo Dry Valleys, Antarctica , 2006 .

[84]  J. Bockheim Properties and Classification of Cold Desert Soils from Antarctica , 1997 .

[85]  James W. Head,et al.  Kilometer‐scale roughness of Mars: Results from MOLA data analysis , 2000 .

[86]  R Sullivan,et al.  The Spirit Rover's Athena science investigation at Gusev Crater, Mars. , 2004, Science.

[87]  F. Forget,et al.  Formation of Recent Martian Debris Flows by Melting of Near-Surface Ground Ice at High Obliquity , 2001, Science.

[88]  P. Doran,et al.  Snow-Patch Influence on Soil Biogeochemical Processes and Invertebrate Distribution in the McMurdo Dry Valleys, Antarctica , 2003 .

[89]  I. B. Campbell,et al.  A CLASSIFICATION OF FRIGIC SOILS—THE ZONAL SOILS OF THE ANTARCTIC CONTINENT , 1969 .

[90]  M. Richardson,et al.  Long‐term evolution of transient liquid water on Mars , 2005 .

[91]  G. Denton,et al.  The geologic basis for a reconstruction of a grounded ice sheet in mcmurdo sound, antarctica, at the last glacial maximum , 2000 .

[92]  N. Matsuoka,et al.  Solifluction rates, processes and landforms: a global review , 2001 .

[93]  G. Neukum,et al.  Modification of the dichotomy boundary on Mars by Amazonian mid‐latitude regional glaciation , 2006 .

[94]  Lorraine Schnabel,et al.  Chemical composition of Martian fines , 1982 .

[95]  I. B. Campbell,et al.  Permafrost properties, patterns and processes in the Transantarctic Mountains region , 2006 .

[96]  P. Christensen Formation of recent martian gullies through melting of extensive water-rich snow deposits , 2003, Nature.

[97]  T. Chinn Hydrology and climate in the Ross Sea area , 1981 .

[98]  Jennifer Lynne Heldmann,et al.  Observations of martian gullies and constraints on potential formation mechanisms , 2004 .

[99]  B. Brock,et al.  Quantified time scale for glacial valley cross-profile evolution in alpine mountains , 2006 .

[100]  David E. Smith,et al.  Mars Orbiter Laser Altimeter: Experiment summary after the first year of global mapping of Mars , 2001 .

[101]  P. Mayewski,et al.  Morphology and Dynamics of the Rock Glaciers in Southern Victoria Land, Antarctica , 1983, Arctic and Alpine Research.

[102]  M. Mellon,et al.  High‐resolution thermal inertia mapping of Mars: Sites of exobiological interest , 2000 .

[103]  N. Kato,et al.  The origin of salts in water bodies of the McMurdo Dry Valleys , 1998, Antarctic Science.

[104]  H. Wright,et al.  The Quaternary of the United States , 1966 .

[105]  R. Armstrong,et al.  The Physics of Glaciers , 1981 .

[106]  Steven W. Squyres,et al.  Ice in the Martian regolith , 1992 .

[107]  J. Bockheim,et al.  Genesis, properties and sensitivity of Antarctic Gelisols , 1999, Antarctic Science.

[108]  V. Baker Water and the martian landscape , 2001, Nature.

[109]  James W. Head,et al.  Cold-based Mountain Glaciers on Mars: Western Arsia Mons Fan-shaped Deposits , 2003 .

[110]  J. Severinghaus,et al.  Entrainment at cold glacier beds , 2000 .

[111]  R. Bradley Paleoclimatology: Reconstructing Climates of the Quaternary , 1999 .

[112]  R. Rieder,et al.  Chemistry of Rocks and Soils at Meridiani Planum from the Alpha Particle X-ray Spectrometer , 2004, Science.

[113]  S. Schumm,et al.  Yield of sediment in relation to mean annual precipitation , 1958 .

[114]  Kenneth L. Tanaka Geology and insolation-driven climatic history of Amazonian north polar materials on Mars , 2005, Nature.

[115]  John F. Mustard,et al.  Recent ice ages on Mars , 2003, Nature.

[116]  J. Mustard,et al.  Evidence for recent climate change on Mars from the identification of youthful near-surface ground ice , 2001, Nature.

[117]  J. Kasting,et al.  The case for a wet, warm climate on early Mars. , 1987, Icarus.

[118]  F. O. Huck,et al.  The Surface of Mars: The View from the Viking 2 Lander , 1976, Science.

[119]  D. Elliot,et al.  Occurrence and Dispersal of Magmas in the Jurassic Ferrar Large Igneous Province, Antarctica , 2004 .

[120]  N. Cabrol,et al.  On the possibility of liquid water on present‐day Mars , 2001 .

[121]  W. B. Whalley,et al.  A glacial interpretation for the origin and formation of the Marinet Rock Glacier , 1998 .

[122]  B. Hallet,et al.  Rates of erosion and sediment evacuation by glaciers: A review of field data and their implications , 1996 .

[123]  F. Fanale,et al.  Distribution and state of H2O in the high-latitude shallow subsurface of Mars , 1986 .

[124]  Gerardo Bocco,et al.  Gully erosion: processes and models , 1991 .

[125]  J. Laskar,et al.  Orbital forcing of the martian polar layered deposits , 2002, Nature.

[126]  Alan D. Howard,et al.  The case for rainfall on a warm, wet early Mars , 2002 .

[127]  N. Mangold High latitude patterned grounds on Mars: Classification, distribution and climatic control , 2005 .

[128]  William H. Farrand,et al.  The Spirit Rover9s Athena Science Investigation at Gusev Crater, Mars , 2004 .

[129]  Massimo Frezzotti,et al.  Ice front fluctuation, iceberg calving flux and mass balance of Victoria Land glaciers , 1997, Antarctic Science.

[130]  D. Sugden,et al.  Landscape evolution of the Dry Valleys, Transantarctic Mountains : tectonic implications , 1995 .

[131]  P. Allemand,et al.  Experimental and theoretical deformation of ice-rock mixtures : Implications on rheology and ice content of Martian permafrost , 2002 .

[132]  C. Allen,et al.  Weathering of basaltic rocks under cold, arid conditions - Antarctica and Mars , 1991 .

[133]  I. Hawes,et al.  Ecosystem processes in Antarctic ice-free landscapes : proceedings of an International Workshop on Polar Desert Ecosystems, Christchurch, New Zealand, 1-4 July 1996 , 1997 .

[134]  B. Hallet,et al.  Erosion rates during rapid deglaciation in Icy Bay, Alaska , 2006 .

[135]  Peter T. Doran,et al.  Climatology of katabatic winds in the McMurdo dry valleys, southern Victoria Land, Antarctica , 2004 .

[136]  A. Fountain,et al.  Solute and isotope geochemistry of subsurface ice melt seeps in Taylor Valley, Antarctica , 2007 .

[137]  Kenneth S Edgett,et al.  Present-Day Impact Cratering Rate and Contemporary Gully Activity on Mars , 2006, Science.

[138]  Robert L. Tokar,et al.  Global Distribution of Neutrons from Mars: Results from Mars Odyssey , 2002, Science.

[139]  E. C. Morris,et al.  The geology of the Viking lander 2 site , 1977 .

[140]  J. Mustard,et al.  Viscous flow features on the surface of Mars: Observations from high‐resolution Mars Orbiter Camera (MOC) images , 2003 .

[141]  S. Schumm,et al.  Time, space, and causality in geomorphology , 1965 .

[142]  B. Clark Chemical and physical microenvironments at the Viking landing sites , 1979, Journal of Molecular Evolution.

[143]  J. Murton,et al.  Sand veins and wedges in cold aeolian environments , 2000 .

[144]  J. Tedrow The Quaternary of the United States , 1966 .

[145]  J. Turner,et al.  Katabatic wind propagation over the western Ross Sea observed using ERS-1 scatterometer data , 1997, Antarctic Science.

[146]  James W. Head,et al.  Kilometer‐scale slopes on Mars and their correlation with geologic units: Initial results from Mars Orbiter Laser Altimeter (MOLA) data , 1999 .

[147]  David A. Crown,et al.  Morphologic and topographic analyses of debris aprons in the eastern Hellas region, Mars , 2003 .

[148]  D. Mckay,et al.  Antarctic Dry Valleys and indigenous weathering in Mars meteorites: Implications for water and life on Mars , 2005 .

[149]  Jacques Laskar,et al.  Long term evolution and chaotic diffusion of the insolation quantities of Mars , 2004 .

[150]  James W. Head,et al.  Extensive valley glacier deposits in the northern mid-latitudes of Mars: Evidence for Late Amazonian obliquity-driven climate change , 2006 .

[151]  D. Sugden,et al.  Formation of patterned ground and sublimation till over Miocene glacier ice in Beacon Valley, southern Victoria Land, Antarctica , 2002 .

[152]  J. Bockheim,et al.  Late Tertiary Antarctic paleoclimate and ice-sheet dynamics inferred from surficial deposits in Wright Valley , 1993 .

[153]  M. Selby Slope Evolution in an Antarctic Oasis , 1974 .

[154]  Klaus Keil,et al.  Geochemical and mineralogical interpretation of the Viking inorganic chemical results , 1977 .

[155]  J. Harbor,et al.  Landscape preservation under Fennoscandian ice sheets determined from in situ produced 10Be and 26Al , 2002 .

[156]  R. E. Arvidson,et al.  Supporting Online Material , 2003 .

[157]  F. Fanale,et al.  Possible Mars brines: Equilibrium and kinetic considerations , 1986 .

[158]  T. Encrenaz,et al.  Global Mineralogical and Aqueous Mars History Derived from OMEGA/Mars Express Data , 2006, Science.

[159]  G. Denton,et al.  Late Cenozoic Antarctic paleoclimate reconstructed from volcanic ashes in the Dry Valleys region of southern Victoria Land , 1996 .

[160]  T. Péwé Sand-wedge polygons (tesselations) in the McMurdo Sound region, Antarctica; a progress report , 1959 .

[161]  Raymond E. Arvidson,et al.  One Mars Year: Viking Lander Imaging Observations , 1979, Science.

[162]  Jeffrey R. Johnson,et al.  In Situ Evidence for an Ancient Aqueous Environment at Meridiani Planum, Mars , 2004, Science.

[163]  D. Marchant,et al.  Sensitivity of ice-cemented Antarctic soils to greenhouse-induced thawing: Are terrestrial archives at risk? , 2007 .

[164]  M. Mellon Small‐scale polygonal features on Mars: Seasonal thermal contraction cracks in permafrost , 1997 .

[165]  J. Pollack,et al.  Dynamics of the atmosphere of Mars , 1992 .

[166]  A. P. Wolfe,et al.  Holocene glaciation and climate evolution of Baffin Island, Arctic Canada , 2005 .

[167]  Eric Rignot,et al.  Rock glacier surface motion in Beacon Valley, Antarctica, from synthetic‐aperture radar interferometry , 2002 .

[168]  J. Tillman Mars global atmospheric oscillations - Annually synchronized, transient normal-mode oscillations and the triggering of global dust storms , 1988 .

[169]  R. Arvidson,et al.  Correspondence and least squares analyses of soil and rock compositions for the Viking Lander 1 and Pathfinder landing sites , 2000 .

[170]  C. B. Farmer,et al.  Global seasonal variation of water vapor on Mars and the implications for permafrost , 1979 .

[171]  J. Webster-Brown,et al.  Chemistry and stratification of Antarctic meltwater ponds II: Inland ponds in the McMurdo Dry Valleys, Victoria Land , 2006, Antarctic Science.

[172]  W. Dickinson,et al.  Antarctic permafrost: An analogue for water and diagenetic minerals on Mars , 2003 .

[173]  Diane M. McKnight,et al.  Dry Valley Streams in Antarctica: Ecosystems Waiting for Water , 1999 .

[174]  R. Jaumann,et al.  Recent debris flows on Mars: Seasonal observations of the Russell Crater dune field , 2003 .

[175]  Michael E. Zolensky,et al.  Aqueous alteration of the Nakhla meteorite , 1991 .

[176]  D. Ming,et al.  Water alteration of rocks and soils on Mars at the Spirit rover site in Gusev crater , 2005, Nature.

[177]  B. Vaughn,et al.  Determining long time‐scale hyporheic zone flow paths in Antarctic streams , 2003 .

[178]  M. Settle Formation and deposition of volcanic sulfate aerosols on Mars , 1979 .

[179]  F. Fanale,et al.  Possible Martian brines: Radar observations and models , 1990 .

[180]  D. Burt,et al.  Eutectic Brines on Mars: Origin and Possible Relation to Young Seepage Features , 2002 .

[181]  F. O. Huck,et al.  The Surface of Mars: The View from the Viking 1 Lander , 1976, Science.

[182]  A. Banin,et al.  Surface chemistry and mineralogy , 1992 .

[183]  I. Heyse,et al.  Composite‐wedge pseudomorphs in Flanders, Belgium , 2006 .

[184]  Bruce M. Jakosky,et al.  The distribution and behavior of Martian ground ice during past and present epochs , 1995 .

[185]  M. Malin Salt weathering on Mars , 1974 .

[186]  D. Sugden,et al.  Miocene Glacial Stratigraphy and Landscape Evolution of the Western Asgard Range, Antarctica , 1993 .

[187]  James W. Head,et al.  Equilibrium Landforms in the Dry Valleys of Antarctica: Implications for Landscape Evolution and Climate Change on Mars , 2005 .

[188]  A. Ashworth,et al.  Major middle Miocene global climate change: Evidence from East Antarctica and the Transantarctic Mountains , 2007 .

[189]  J. Head,et al.  Distribution and origin of patterned ground on Mullins Valley debris-covered glacier, Antarctica: the roles of ice flow and sublimation , 2006, Antarctic Science.

[190]  M. Malin,et al.  Mars Global Surveyor Mars Orbiter Camera: Interplanetary cruise through primary mission , 2001 .

[191]  J. Laskar,et al.  Recent ice-rich deposits formed at high latitudes on Mars by sublimation of unstable equatorial ice during low obliquity , 2004, Nature.

[192]  J. M. Kimble Cryosols : permafrost-affected soils , 2004 .

[193]  W. Boynton,et al.  Maps of Subsurface Hydrogen from the High Energy Neutron Detector, Mars Odyssey , 2002, Science.

[194]  Christopher P. McKay,et al.  Valley floor climate observations from the McMurdo dry valleys, Antarctica, 1986–2000 , 2002 .

[195]  O. Matsubaya,et al.  Chemical characteristics of pond waters in the Labyrinth of southern Victoria Land, Antarctica , 1988, Hydrobiologia.

[196]  A. Knoll,et al.  The Opportunity Rover's Athena Science Investigation at Meridiani Planum, Mars , 2004, Science.

[197]  M. Summerfield,et al.  Long-term rates of denudation in t he Dry Valleys, Transantarctic Mountains, southern Victoria Land, Antarctica bases on in-situ-produced cosmogenic 21Ne. , 1999 .