On the homology of locally compact spaces with ends

[1]  Henning Bruhn,et al.  The cycle space of a 3-connected locally finite graph is generated by its finite and infinite peripheral circuits , 2004, J. Comb. Theory, Ser. B.

[2]  Maya Jakobine Stein,et al.  MacLane's planarity criterion for locally finite graphs , 2006, J. Comb. Theory, Ser. B.

[3]  Agelos Georgakopoulos,et al.  Geodetic Topological Cycles in Locally Finite Graphs , 2009, Electron. J. Comb..

[4]  Reinhard Diestel,et al.  Graph Theory , 1997 .

[5]  R. Diestel,et al.  The homology of locally finite graphs with ends , 2008 .

[6]  Reinhard Diestel,et al.  On Infinite Cycles I , 2004, Comb..

[7]  Reinhard Diestel,et al.  The Cycle Space of an Infinite Graph , 2005, Combinatorics, Probability and Computing.

[8]  W. Durand Theory of Dimensions , 1934 .

[9]  Agelos Georgakopoulos,et al.  Topological Circles and Euler Tours in Locally Finite Graphs , 2009, Electron. J. Comb..

[10]  Maya Jakobine Stein,et al.  Cycle‐cocycle partitions and faithful cycle covers for locally finite graphs , 2005, J. Graph Theory.

[11]  Reinhard Diestel,et al.  The homology of a locally finite graph with ends , 2010, Comb..

[12]  Maya Jakobine Stein,et al.  Arboricity and tree-packing in locally finite graphs , 2006, J. Comb. Theory, Ser. B.

[13]  R. Ho Algebraic Topology , 2022 .

[14]  Henning Bruhn,et al.  Eulerian edge sets in locally finite graphs , 2011, Comb..

[15]  Ryszard Engelking,et al.  Theory of dimensions : finite and infinite , 1995 .

[16]  Henning Bruhn,et al.  Bicycles and left-right tours in locally finite graphs , 2009, Eur. J. Comb..

[17]  Henning Bruhn,et al.  Duality in Infinite Graphs , 2006, Combinatorics, Probability and Computing.

[18]  C. Kosniowski,et al.  Proper transformation groups , 1977 .

[19]  G. Howe,et al.  The Theory of Dimensions , 1937, Nature.

[20]  N. Steenrod,et al.  Foundations of Algebraic Topology , 1952 .