Nonparametric density estimation based on the scaled Laplace transform inversion
暂无分享,去创建一个
[1] Hans-Georg Müller,et al. Smooth optimum kernel estimators near endpoints , 1991 .
[2] Song-xi Chen,et al. Beta kernel estimators for density functions , 1999 .
[3] Frits H. Ruymgaart,et al. Moment density estimation for positive random variables , 2012 .
[4] M. Lejeune,et al. Smooth estimators of distribution and density functions , 1992 .
[5] Taoufik Bouezmarni,et al. Gamma Kernel Estimators for Density and Hazard Rate of Right-Censored Data , 2011 .
[6] Song-xi Chen,et al. Probability Density Function Estimation Using Gamma Kernels , 2000 .
[7] B. Silverman. Density estimation for statistics and data analysis , 1986 .
[8] M. C. Jones,et al. A SIMPLE NONNEGATIVE BOUNDARY CORRECTION METHOD FOR KERNEL DENSITY ESTIMATION , 1996 .
[9] Jan Mielniczuk,et al. Some Asymptotic Properties of Kernel Estimators of a Density Function in Case of Censored Data , 1986 .
[10] Taoufik Bouezmarni,et al. Consistency of the beta kernel density function estimator , 2003 .
[11] Robert M. Mnatsakanov,et al. Varying kernel density estimation on R , 2012 .
[12] M. C. Jones,et al. Local linear density estimation for filtered survival data, with bias correction , 2009 .
[13] M. C. Jones,et al. Simple boundary correction for kernel density estimation , 1993 .
[14] Artak Hakobyan,et al. Approximation of the ruin probability using the scaled Laplace transform inversion , 2015, Appl. Math. Comput..