Uniqueness for an inverse coefficient problem for a one-dimensional time-fractional diffusion equation with non-zero boundary conditions

We consider initial boundary value problems for one-dimensional diffusion equation with time-fractional derivative of order $\alpha \in (0,1)$ which are subject to non-zero Neumann boundary conditions. We prove the uniqueness for an inverse coefficient problem of determining a spatially varying potential and the order of the time-fractional derivative by Dirichlet data at one end point of the spatial interval. The imposed Neumann conditions are required to be within the correct Sobolev space of order $\alpha$. Our proof is based on a representation formula of solution to an initial boundary value problem with non-zero boundary data. Moreover, we apply such a formula and prove the uniqueness in the determination of boundary value at another end point by Cauchy data at one end point.

[1]  Masahiro Yamamoto,et al.  Initial-boundary value problems for fractional diffusion equations with time-dependent coefficients , 2017, 1703.07160.

[2]  Masahiro Yamamoto,et al.  Uniqueness in inverse boundary value problems for fractional diffusion equations , 2014, 1404.7024.

[3]  Masahiro Yamamoto,et al.  Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems , 2011 .

[4]  William Rundell,et al.  An inverse problem for a one-dimensional time-fractional diffusion problem , 2012 .

[5]  Alan Pierce Unique Identification of Eigenvalues and Coefficients in a Parabolic Problem , 1979 .

[6]  Yuri Luchko,et al.  Handbook of fractional calculus with applications , 2019 .

[7]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[8]  Masahiro Yamamoto,et al.  Simultaneous inversion for the space-dependent diffusion coefficient and the fractional order in the time-fractional diffusion equation , 2013 .

[9]  Masahiro Yamamoto,et al.  Inverse problems of determining sources of the fractional partial differential equations , 2019, Fractional Differential Equations.

[10]  G. Nakamura,et al.  Unique continuation property for multi-terms time fractional diffusion equations , 2017, Mathematische Annalen.

[11]  Masahiro Yamamoto,et al.  The uniqueness of inverse problems for a fractional equation with a single measurement , 2020 .

[12]  Masahiro Yamamoto,et al.  Time-Fractional Differential Equations , 2020 .

[13]  I. Gel'fand,et al.  On the determination of a differential equation from its spectral function , 1955 .

[14]  G. Burton Sobolev Spaces , 2013 .

[15]  K. Diethelm Mittag-Leffler Functions , 2010 .

[16]  Masahiro Yamamoto,et al.  Time-fractional diffusion equation in the fractional Sobolev spaces , 2015 .

[17]  Masahiro Yamamoto,et al.  On existence and uniqueness of solutions for semilinear fractional wave equations , 2015, 1510.03478.

[18]  Masahiro Yamamoto,et al.  Inverse problems of determining parameters of the fractional partial differential equations , 2019, Fractional Differential Equations.

[19]  Takashi Suzuki,et al.  A uniqueness theorem in an identification problem for coefficients of parabolic equations , 1980 .

[20]  Masahiro Yamamoto Weak solutions to non-homogeneous boundary value problems for time-fractional diffusion equations , 2018 .

[21]  R. Gorenflo,et al.  Mittag-Leffler Functions, Related Topics and Applications , 2014, Springer Monographs in Mathematics.

[22]  Masahiro Yamamoto,et al.  Unique continuation principle for the one-dimensional time-fractional diffusion equation , 2018, Fractional Calculus and Applied Analysis.

[23]  Masahiro Yamamoto,et al.  Recovery of a potential in a fractional diffusion equation , 2018, 1811.05971.

[24]  Ting Wei,et al.  Uniqueness for identifying a space-dependent zeroth-order coefficient in a time-fractional diffusion-wave equation from a single boundary point measurement , 2021, Appl. Math. Lett..

[25]  Jigen Peng,et al.  Simultaneous uniqueness for an inverse problem in a time-fractional diffusion equation , 2020, Appl. Math. Lett..

[26]  Israel Michael Sigal,et al.  Introduction to Spectral Theory , 1996 .

[27]  Masahiro Yamamoto,et al.  Uniqueness in an inverse problem for a one-dimensional fractional diffusion equation , 2009 .

[28]  I. Podlubny Fractional differential equations , 1998 .

[29]  Jin Cheng,et al.  Unique continuation property for the anomalous diffusion and its application , 2013 .

[30]  Yury F. Luchko Initial-boundary-value problems for the generalized multi-term time-fractional diffusion equation , 2011 .

[31]  G. Nakamura,et al.  Unique continuation property for anomalous slow diffusion equation , 2016 .

[32]  Masahiro Yamamoto,et al.  Global uniqueness in an inverse problem for time fractional diffusion equations , 2016, 1601.00810.

[33]  Masahiro Yamamoto,et al.  Inverse problems of determining coefficients of the fractional partial differential equations , 2019, Fractional Differential Equations.

[34]  E. C. Titchmarsh The Zeros of Certain Integral Functions , 1926 .