Online Algorithms for Covering and Packing Problems with Convex Objectives

We present online algorithms for covering and packing problems with (non-linear) convex objectives. The convex covering problem is defined as: min<sub>xϵ</sub>R<sub>+</sub><sup>n</sup>f(x) s.t. Ax ≥ 1, where f:R<sub>+</sub><sup>n</sup> → R<sub>+</sub> is a monotone convex function, and A is an m×n matrix with non-negative entries. In the online version, a new row of the constraint matrix, representing a new covering constraint, is revealed in each step and the algorithm is required to maintain a feasible and monotonically non-decreasing assignment x over time. We also consider a convex packing problem defined as: max<sub>yϵR+</sub><sup>m</sup> Σ<sub>j=1</sub><sup>m</sup> yj - g(A<sup>T</sup> y), where g:R<sub>+</sub><sup>n</sup>→R<sub>+</sub> is a monotone convex function. In the online version, each variable yj arrives online and the algorithm must decide the value of yj on its arrival. This represents the Fenchel dual of the convex covering program, when g is the convex conjugate of f. We use a primal-dual approach to give online algorithms for these generic problems, and use them to simplify, unify, and improve upon previous results for several applications.

[1]  Sreenivas Gollapudi,et al.  Online Set Cover with Set Requests , 2014, APPROX-RANDOM.

[2]  Yossi Azar,et al.  Online Mixed Packing and Covering , 2012, SODA.

[3]  Noga Alon,et al.  A general approach to online network optimization problems , 2004, SODA '04.

[4]  Debmalya Panigrahi,et al.  Online Buy-at-Bulk Network Design , 2018, SIAM J. Comput..

[5]  Mohit Singh,et al.  Online Caching with Convex Costs: Extended Abstract , 2015, SPAA.

[6]  Nikhil R. Devanur,et al.  Online matching with concave returns , 2012, STOC '12.

[7]  Joseph Naor,et al.  Online Packing and Covering Framework with Convex Objectives , 2014, ArXiv.

[8]  R. Latala Estimation of moments of sums of independent real random variables , 1997 .

[9]  Joseph Naor,et al.  Towards the randomized k-server conjecture: a primal-dual approach , 2010, SODA '10.

[10]  Joseph Naor,et al.  A Polylogarithmic-Competitive Algorithm for the k-Server Problem , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[11]  Nikhil R. Devanur,et al.  Primal Dual Gives Almost Optimal Energy-Efficient Online Algorithms , 2014, ACM Trans. Algorithms.

[12]  Joseph Naor,et al.  Improved bounds for online routing and packing via a primal-dual approach , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[13]  Zhiyi Huang,et al.  Welfare Maximization with Production Costs: A Primal Dual Approach , 2014, SODA.

[14]  Nikhil R. Devanur,et al.  Randomized Primal-Dual analysis of RANKING for Online BiPartite Matching , 2013, SODA.

[15]  Joseph Naor,et al.  Online Primal-Dual Algorithms for Covering and Packing , 2009, Math. Oper. Res..

[16]  Noga Alon,et al.  THE ONLINE SET COVER PROBLEM∗ , 2009 .

[17]  Yossi Azar,et al.  Online Covering with Convex Objectives and Applications , 2014, ArXiv.

[18]  Nikhil R. Devanur,et al.  Fast Algorithms for Online Stochastic Convex Programming , 2014, SODA.

[19]  Lisa Fleischer Data Center Scheduling, Generalized Flows, and Submodularity , 2010, ANALCO.

[20]  Joseph Naor,et al.  Randomized competitive algorithms for generalized caching , 2008, STOC.

[21]  Anupam Gupta,et al.  Approximating Sparse Covering Integer Programs Online , 2014, Math. Oper. Res..

[22]  Joseph Naor,et al.  A Primal-Dual Randomized Algorithm for Weighted Paging , 2007, FOCS.

[23]  Joseph Naor,et al.  Online Primal-Dual Algorithms for Maximizing Ad-Auctions Revenue , 2007, ESA.

[24]  T.-H. Hubert Chan,et al.  Online Convex Covering and Packing Problems , 2015, ArXiv.

[25]  Samir Khuller,et al.  Generalized machine activation problems , 2011, SODA '11.

[26]  Kirk Pruhs,et al.  Online Primal-Dual for Non-linear Optimization with Applications to Speed Scaling , 2011, WAOA.

[27]  Nikhil R. Devanur,et al.  Speed Scaling in the Non-clairvoyant Model , 2015, SPAA.

[28]  Joseph Naor,et al.  The Design of Competitive Online Algorithms via a Primal-Dual Approach , 2009, Found. Trends Theor. Comput. Sci..

[29]  Samir Khuller,et al.  Energy efficient scheduling via partial shutdown , 2009, SODA '10.

[30]  Joseph Naor,et al.  Randomized Competitive Algorithms for Generalized Caching , 2012, SIAM J. Comput..

[31]  Joseph Naor,et al.  A primal-dual randomized algorithm for weighted paging , 2007, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).

[32]  Kirk Pruhs,et al.  Speed scaling for weighted flow time , 2007, SODA '07.

[33]  Adrian S. Lewis,et al.  Convex Analysis And Nonlinear Optimization , 2000 .

[34]  Yishay Mansour,et al.  Welfare and Profit Maximization with Production Costs , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.