Origins of magnetite nanocrystals in Martian meteorite ALH84001
暂无分享,去创建一个
David S. McKay | Everett K. Gibson | Simon J. Clemett | D. Mckay | E. Gibson | K. Thomas-Keprta | S. Clemett | S. Wentworth | Susan J. Wentworth | Kathie Louise Thomas-Keprta
[1] L. Thomas‐KeprtaK,et al. ALH4001における面取り六‐八方晶系磁鉄鉱の結晶 推定的生物学的兆候 , 2001 .
[2] S. Warne,et al. Application of thermomagnetometry to the study of siderite , 1981 .
[3] K. Downing,et al. HRTEM of microcrystalline opal in chert and porcelanite from the Monterey Formation, California , 1996 .
[4] M. Velbel. Chapter 4 Surface Textures and Dissolution Processes of Heavy Minerals in the Sedimentary Cycle: Examples from Pyroxenes and Amphiboles , 2007 .
[5] Lucille A. Giannuzzi,et al. A review of focused ion beam milling techniques for TEM specimen preparation , 1999 .
[6] A. Navrotsky,et al. Synthesis, characterization, and energetics of solid solution along the dolomite-ankerite join, and implications for the stability of ordered CaFe(CO3)2 , 1996 .
[7] Leslie Glasser,et al. Modeling the Thermal Decomposition of Solids on the Basis of Lattice Energy Changes , 1998 .
[8] M. S. Bell,et al. Experimental shock decomposition of siderite and the origin of magnetite in Martian meteorite ALH 84001 , 2007 .
[9] D. French,et al. The application of simultaneous DTA and TG to some aspects of oil shale mineralogy , 1984 .
[10] M. Domeneghetti,et al. Thermal history of ALH 84001 meteorite by Fe2+‐Mg ordering in orthopyroxene , 2007 .
[11] R. Powell,et al. Calculating phase diagrams involving solid solutions via non‐linear equations, with examples using THERMOCALC , 1998 .
[12] Harry Y. McSween,et al. A possible high-temperature origin for the carbonates in the martian meteorite ALH84001 , 1996, Nature.
[13] R. Folk. Some Aspects of Recrystallization in Ancient Limestones , 1965 .
[14] N. Razjigaeva,et al. Trace element composition of detrital magnetite from coastal sediments of northwestern Japan Sea for provenance study , 1992 .
[15] M. F. Mckay,et al. Truncated hexa-octahedral magnetite crystals in ALH84001: Presumptive biosignatures , 2001, Proceedings of the National Academy of Sciences of the United States of America.
[16] K. Iwafuchi,et al. Thermal decomposition of magnesian kutnahorite , 1983 .
[17] Joseph L. Kirschvink,et al. Magnetofossils from Ancient Mars: a Robust Biosignature in the Martian Meteorite ALH84001 , 2002, Applied and Environmental Microbiology.
[18] R. L. Robinson,et al. A modified temperature dependence for the Peng–Robinson equation of state , 2001 .
[19] J. Criado,et al. Comparative study of the kinetics of the thermal decomposition of synthetic and natural siderite samples , 2000 .
[20] A. Brearley. Magnetite in ALH 84001: An origin by shock‐induced thermal decomposition of iron carbonate , 2003 .
[21] A. Treiman,et al. Submicron magnetite grains and carbon compounds in Martian meteorite ALH84001: inorganic, abiotic formation by shock and thermal metamorphism. , 2003, Astrobiology.
[22] P. Mcswiggen. Alternative solution model for the ternary carbonate system CaCO3 - MgCO3 - FeCO3 , 1993 .
[23] A. Treiman. The history of Allan Hills 84001 revised: Multiple shock events , 1998, Meteoritics & planetary science.
[24] J. Eiler,et al. Two populations of carbonate in ALH84001: geochemical evidence for discrimination and genesis , 2002 .
[25] S. Warne,et al. Thermal analysis studies of the dolomite-ferroan dolomite-ankerite series. II. decomposition mechanism in flowing CO2 atmosphere , 1989 .
[26] William Hume-Rothery,et al. The structure of metals and alloys , 1939 .
[27] Harry Y. McSween,et al. An Evaporation Model for Formation of Carbonates in the ALH84001 Martian Meteorite , 1998 .
[28] M. Frezzotti,et al. Transmission electron microscopy applied to fluid inclusion investigations , 2001 .
[29] J. Kirschvink,et al. Elongated prismatic magnetite crystals in ALH84001 carbonate globules: potential Martian magnetofossils. , 2000, Geochimica et cosmochimica acta.
[30] R. Cygan,et al. Cation diffusion in calcite: Determining closure temperatures and the thermal history for the Allan Hills 84001 meteorite , 1998, Meteoritics & planetary science.
[31] A. Gokarn,et al. Kinetics of thermal decomposition of siderite: effect of particle size☆ , 1992 .
[32] G. Flynn,et al. Organic Carbon in Mars Meteorites: A Comparison of ALH84001 and Nakhla , 1999 .
[33] I. P. Wright,et al. Record of fluidrock interactions on Mars from the meteorite ALH84001 , 1994, Nature.
[34] R. Zare,et al. Evidence for the extraterrestrial origin of polycyclic aromatic hydrocarbons in the Martian meteorite ALH84001. , 1998, Faraday discussions.
[35] L. E. Nyquist,et al. Ages and Geologic Histories of Martian Meteorites , 2001 .
[36] J. Dubrawski. Differential scanning calorimetry and its applications to mineralogy and the geosciences , 1991 .
[37] S. Veesler,et al. Calcium Carbonate Crystals Promote Calcium Oxalate Crystallization by Heterogeneous or Epitaxial Nucleation: Possible Involvement in the Control of Urinary Lithogenesis , 1996, Calcified Tissue International.
[38] R. Roy,et al. Controlled nucleation and crystal growth of various CaC03 phases by the silica gel technique , 1974 .
[39] P. H. Warren,et al. Petrologic evidence for low-temperature, possibly flood evaporitic origin of carbonates in the ALH84001 meteorite. , 1998, Journal of geophysical research.
[40] R. Zare,et al. Search for Past Life on Mars: Possible Relic Biogenic Activity in Martian Meteorite ALH84001 , 1996, Science.
[41] E. Gibson,et al. Low-Temperature Carbonate Concretions in the Martian Meteorite ALH84001: Evidence from Stable Isotopes and Mineralogy , 1997, Science.
[42] Wyn Williams,et al. Critical superparamagnetic/single-domain grain sizes in interacting magnetite particles: implications for magnetosome crystals , 2009, Journal of The Royal Society Interface.
[43] H. McSween,et al. Magnetite whiskers and platelets in the ALH84001 Martian meteorite: evidence of vapor phase growth. , 1996, Geochimica et cosmochimica acta.
[44] Michael Unser,et al. Complex wavelets for extended depth‐of‐field: A new method for the fusion of multichannel microscopy images , 2004, Microscopy research and technique.
[45] F. Guyot,et al. Stable mn-magnetite derived from Mn-siderite by heating in air , 2003 .
[46] R. Bechmann,et al. Numerical data and functional relationships in science and technology , 1969 .
[47] Joseph L. Kirschvink,et al. Paleomagnetic Evidence of a Low-Temperature Origin of Carbonate in the Martian Meteorite ALH84001 , 1997, Science.
[48] R. Zenobi,et al. Multiphoton ionization spectroscopy in surface analysis and laser desorption mass spectrometry , 1996 .
[49] Maria A. Mange,et al. Heavy minerals in use , 2007 .
[50] S. Stewart,et al. Temperatures on Mars from 40Ar/39Ar thermochronology of ALH84001 , 2002 .
[51] A. Gokarn,et al. Studies in the thermal decomposition of natural siderites in the presence of air , 1990 .
[52] J. H. Levy,et al. Siderite decomposition in retorting atmospheres , 1993 .
[53] Roger Powell,et al. An internally consistent thermodynamic data set for phases of petrological interest , 1998 .
[54] H. Eugster,et al. Experimental control of oxygen fugacities by graphite-gas equilibriums , 1965 .
[55] D. Stöffler. Maskelynite Confirmed as Diaplectic Glass: Indication for Peak Shock Pressures Below 45 GPa in All Martian Meteorites , 2000 .
[56] Aivo Lepland,et al. Reassessing the evidence for the earliest traces of life , 2002, Nature.
[57] L. Kennedy,et al. Low-temperature recrystallization in calcite: Mechanisms and consequences , 2001 .
[58] Yutaka Tamaura,et al. Complete reduction of carbon dioxide to carbon using cation-excess magnetite , 1990, Nature.
[59] J P Wikswo,et al. A low temperature transfer of ALH84001 from Mars to Earth. , 2000, Science.
[60] D. Mittlefehldt,et al. ALH84001, a cumulate orthopyroxenite member of the martian meteorite clan , 1994 .
[61] Philip R. Christensen,et al. Thermal infrared emission spectroscopy of anhydrous carbonates , 1997 .
[62] Jörg Fritz,et al. Ejection of Martian meteorites , 2005 .
[63] P. Reiners,et al. High-temperature Mars-to-Earth transfer of meteorite ALH84001 , 2006 .
[64] B. Reynard,et al. Magnetite-like nanocrystals formed by laser-driven shocks in siderite , 2006 .
[65] J. Dubrawski. Thermal decomposition of some siderite-magnesite minerals using DSC , 1991 .
[66] A. Navrotsky,et al. Synthesis, characterization, and enthalpy of mixing of the (Fe,Mg)C0 3 solid solution , 1996 .
[67] S. Warne,et al. Thermomagnetometry and thermal decomposition of siderite , 1981 .
[68] B. Weiss,et al. Martian Surface Paleotemperatures from Thermochronology of Meteorites , 2005, Science.
[69] I. Lyon,et al. Correlated chemical and isotopic zoning in carbonates in the martian meteorite ALH84001 , 1998 .
[70] D. J. Barber,et al. Origin of supposedly biogenic magnetite in the Martian meteorite Allan Hills 84001 , 2002, Proceedings of the National Academy of Sciences of the United States of America.
[71] C. Rao,et al. Synthesis of complex metal oxides using hydroxide, cyanide, and nitrate solid solution precursors , 1985 .
[72] P. Mcswiggen. Alternative solution model for the ternary carbonate system CaCO3 - MgCO3 - FeCO3 , 1993 .
[73] Z. Adonyi,et al. Thermal decomposition kinetics of siderite , 1986 .
[74] R. Reid,et al. Carbonate Recrystallization in Shallow Marine Environments: A Widespread Diagenetic Process Forming Micritized Grains , 1998 .
[75] H. Wiesmann,et al. The age of the carbonates in martian meteorite ALH84001. , 1999, Science.
[76] F. Ryerson,et al. The temperature of formation of carbonate in Martian meteorite ALH84001: constraints from cation diffusion , 1999 .