Origins of magnetite nanocrystals in Martian meteorite ALH84001

Abstract The Martian meteorite ALH84001 preserves evidence of interaction with aqueous fluids while on Mars in the form of microscopic carbonate disks. These carbonate disks are believed to have precipitated 3.9 Ga ago at beginning of the Noachian epoch on Mars during which both the oldest extant Martian surfaces were formed, and perhaps the earliest global oceans. Intimately associated within and throughout these carbonate disks are nanocrystal magnetites (Fe 3 O 4 ) with unusual chemical and physical properties, whose origins have become the source of considerable debate. One group of hypotheses argues that these magnetites are the product of partial thermal decomposition of the host carbonate. Alternatively, the origins of magnetite and carbonate may be unrelated; that is, from the perspective of the carbonate the magnetite is allochthonous. For example, the magnetites might have already been present in the aqueous fluids from which the carbonates were believed to have been deposited. We have sought to resolve between these hypotheses through the detailed characterization of the compositional and structural relationships of the carbonate disks and associated magnetites with the orthopyroxene matrix in which they are embedded. Extensive use of focused ion beam milling techniques has been utilized for sample preparation. We then compared our observations with those from experimental thermal decomposition studies of sideritic carbonates under a range of plausible geological heating scenarios. We conclude that the vast majority of the nanocrystal magnetites present in the carbonate disks could not have formed by any of the currently proposed thermal decomposition scenarios. Instead, we find there is considerable evidence in support of an alternative allochthonous origin for the magnetite unrelated to any shock or thermal processing of the carbonates.

[1]  L. Thomas‐KeprtaK,et al.  ALH4001における面取り六‐八方晶系磁鉄鉱の結晶 推定的生物学的兆候 , 2001 .

[2]  S. Warne,et al.  Application of thermomagnetometry to the study of siderite , 1981 .

[3]  K. Downing,et al.  HRTEM of microcrystalline opal in chert and porcelanite from the Monterey Formation, California , 1996 .

[4]  M. Velbel Chapter 4 Surface Textures and Dissolution Processes of Heavy Minerals in the Sedimentary Cycle: Examples from Pyroxenes and Amphiboles , 2007 .

[5]  Lucille A. Giannuzzi,et al.  A review of focused ion beam milling techniques for TEM specimen preparation , 1999 .

[6]  A. Navrotsky,et al.  Synthesis, characterization, and energetics of solid solution along the dolomite-ankerite join, and implications for the stability of ordered CaFe(CO3)2 , 1996 .

[7]  Leslie Glasser,et al.  Modeling the Thermal Decomposition of Solids on the Basis of Lattice Energy Changes , 1998 .

[8]  M. S. Bell,et al.  Experimental shock decomposition of siderite and the origin of magnetite in Martian meteorite ALH 84001 , 2007 .

[9]  D. French,et al.  The application of simultaneous DTA and TG to some aspects of oil shale mineralogy , 1984 .

[10]  M. Domeneghetti,et al.  Thermal history of ALH 84001 meteorite by Fe2+‐Mg ordering in orthopyroxene , 2007 .

[11]  R. Powell,et al.  Calculating phase diagrams involving solid solutions via non‐linear equations, with examples using THERMOCALC , 1998 .

[12]  Harry Y. McSween,et al.  A possible high-temperature origin for the carbonates in the martian meteorite ALH84001 , 1996, Nature.

[13]  R. Folk Some Aspects of Recrystallization in Ancient Limestones , 1965 .

[14]  N. Razjigaeva,et al.  Trace element composition of detrital magnetite from coastal sediments of northwestern Japan Sea for provenance study , 1992 .

[15]  M. F. Mckay,et al.  Truncated hexa-octahedral magnetite crystals in ALH84001: Presumptive biosignatures , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[16]  K. Iwafuchi,et al.  Thermal decomposition of magnesian kutnahorite , 1983 .

[17]  Joseph L. Kirschvink,et al.  Magnetofossils from Ancient Mars: a Robust Biosignature in the Martian Meteorite ALH84001 , 2002, Applied and Environmental Microbiology.

[18]  R. L. Robinson,et al.  A modified temperature dependence for the Peng–Robinson equation of state , 2001 .

[19]  J. Criado,et al.  Comparative study of the kinetics of the thermal decomposition of synthetic and natural siderite samples , 2000 .

[20]  A. Brearley Magnetite in ALH 84001: An origin by shock‐induced thermal decomposition of iron carbonate , 2003 .

[21]  A. Treiman,et al.  Submicron magnetite grains and carbon compounds in Martian meteorite ALH84001: inorganic, abiotic formation by shock and thermal metamorphism. , 2003, Astrobiology.

[22]  P. Mcswiggen Alternative solution model for the ternary carbonate system CaCO3 - MgCO3 - FeCO3 , 1993 .

[23]  A. Treiman The history of Allan Hills 84001 revised: Multiple shock events , 1998, Meteoritics & planetary science.

[24]  J. Eiler,et al.  Two populations of carbonate in ALH84001: geochemical evidence for discrimination and genesis , 2002 .

[25]  S. Warne,et al.  Thermal analysis studies of the dolomite-ferroan dolomite-ankerite series. II. decomposition mechanism in flowing CO2 atmosphere , 1989 .

[26]  William Hume-Rothery,et al.  The structure of metals and alloys , 1939 .

[27]  Harry Y. McSween,et al.  An Evaporation Model for Formation of Carbonates in the ALH84001 Martian Meteorite , 1998 .

[28]  M. Frezzotti,et al.  Transmission electron microscopy applied to fluid inclusion investigations , 2001 .

[29]  J. Kirschvink,et al.  Elongated prismatic magnetite crystals in ALH84001 carbonate globules: potential Martian magnetofossils. , 2000, Geochimica et cosmochimica acta.

[30]  R. Cygan,et al.  Cation diffusion in calcite: Determining closure temperatures and the thermal history for the Allan Hills 84001 meteorite , 1998, Meteoritics & planetary science.

[31]  A. Gokarn,et al.  Kinetics of thermal decomposition of siderite: effect of particle size☆ , 1992 .

[32]  G. Flynn,et al.  Organic Carbon in Mars Meteorites: A Comparison of ALH84001 and Nakhla , 1999 .

[33]  I. P. Wright,et al.  Record of fluid–rock interactions on Mars from the meteorite ALH84001 , 1994, Nature.

[34]  R. Zare,et al.  Evidence for the extraterrestrial origin of polycyclic aromatic hydrocarbons in the Martian meteorite ALH84001. , 1998, Faraday discussions.

[35]  L. E. Nyquist,et al.  Ages and Geologic Histories of Martian Meteorites , 2001 .

[36]  J. Dubrawski Differential scanning calorimetry and its applications to mineralogy and the geosciences , 1991 .

[37]  S. Veesler,et al.  Calcium Carbonate Crystals Promote Calcium Oxalate Crystallization by Heterogeneous or Epitaxial Nucleation: Possible Involvement in the Control of Urinary Lithogenesis , 1996, Calcified Tissue International.

[38]  R. Roy,et al.  Controlled nucleation and crystal growth of various CaC03 phases by the silica gel technique , 1974 .

[39]  P. H. Warren,et al.  Petrologic evidence for low-temperature, possibly flood evaporitic origin of carbonates in the ALH84001 meteorite. , 1998, Journal of geophysical research.

[40]  R. Zare,et al.  Search for Past Life on Mars: Possible Relic Biogenic Activity in Martian Meteorite ALH84001 , 1996, Science.

[41]  E. Gibson,et al.  Low-Temperature Carbonate Concretions in the Martian Meteorite ALH84001: Evidence from Stable Isotopes and Mineralogy , 1997, Science.

[42]  Wyn Williams,et al.  Critical superparamagnetic/single-domain grain sizes in interacting magnetite particles: implications for magnetosome crystals , 2009, Journal of The Royal Society Interface.

[43]  H. McSween,et al.  Magnetite whiskers and platelets in the ALH84001 Martian meteorite: evidence of vapor phase growth. , 1996, Geochimica et cosmochimica acta.

[44]  Michael Unser,et al.  Complex wavelets for extended depth‐of‐field: A new method for the fusion of multichannel microscopy images , 2004, Microscopy research and technique.

[45]  F. Guyot,et al.  Stable mn-magnetite derived from Mn-siderite by heating in air , 2003 .

[46]  R. Bechmann,et al.  Numerical data and functional relationships in science and technology , 1969 .

[47]  Joseph L. Kirschvink,et al.  Paleomagnetic Evidence of a Low-Temperature Origin of Carbonate in the Martian Meteorite ALH84001 , 1997, Science.

[48]  R. Zenobi,et al.  Multiphoton ionization spectroscopy in surface analysis and laser desorption mass spectrometry , 1996 .

[49]  Maria A. Mange,et al.  Heavy minerals in use , 2007 .

[50]  S. Stewart,et al.  Temperatures on Mars from 40Ar/39Ar thermochronology of ALH84001 , 2002 .

[51]  A. Gokarn,et al.  Studies in the thermal decomposition of natural siderites in the presence of air , 1990 .

[52]  J. H. Levy,et al.  Siderite decomposition in retorting atmospheres , 1993 .

[53]  Roger Powell,et al.  An internally consistent thermodynamic data set for phases of petrological interest , 1998 .

[54]  H. Eugster,et al.  Experimental control of oxygen fugacities by graphite-gas equilibriums , 1965 .

[55]  D. Stöffler Maskelynite Confirmed as Diaplectic Glass: Indication for Peak Shock Pressures Below 45 GPa in All Martian Meteorites , 2000 .

[56]  Aivo Lepland,et al.  Reassessing the evidence for the earliest traces of life , 2002, Nature.

[57]  L. Kennedy,et al.  Low-temperature recrystallization in calcite: Mechanisms and consequences , 2001 .

[58]  Yutaka Tamaura,et al.  Complete reduction of carbon dioxide to carbon using cation-excess magnetite , 1990, Nature.

[59]  J P Wikswo,et al.  A low temperature transfer of ALH84001 from Mars to Earth. , 2000, Science.

[60]  D. Mittlefehldt,et al.  ALH84001, a cumulate orthopyroxenite member of the martian meteorite clan , 1994 .

[61]  Philip R. Christensen,et al.  Thermal infrared emission spectroscopy of anhydrous carbonates , 1997 .

[62]  Jörg Fritz,et al.  Ejection of Martian meteorites , 2005 .

[63]  P. Reiners,et al.  High-temperature Mars-to-Earth transfer of meteorite ALH84001 , 2006 .

[64]  B. Reynard,et al.  Magnetite-like nanocrystals formed by laser-driven shocks in siderite , 2006 .

[65]  J. Dubrawski Thermal decomposition of some siderite-magnesite minerals using DSC , 1991 .

[66]  A. Navrotsky,et al.  Synthesis, characterization, and enthalpy of mixing of the (Fe,Mg)C0 3 solid solution , 1996 .

[67]  S. Warne,et al.  Thermomagnetometry and thermal decomposition of siderite , 1981 .

[68]  B. Weiss,et al.  Martian Surface Paleotemperatures from Thermochronology of Meteorites , 2005, Science.

[69]  I. Lyon,et al.  Correlated chemical and isotopic zoning in carbonates in the martian meteorite ALH84001 , 1998 .

[70]  D. J. Barber,et al.  Origin of supposedly biogenic magnetite in the Martian meteorite Allan Hills 84001 , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[71]  C. Rao,et al.  Synthesis of complex metal oxides using hydroxide, cyanide, and nitrate solid solution precursors , 1985 .

[72]  P. Mcswiggen Alternative solution model for the ternary carbonate system CaCO3 - MgCO3 - FeCO3 , 1993 .

[73]  Z. Adonyi,et al.  Thermal decomposition kinetics of siderite , 1986 .

[74]  R. Reid,et al.  Carbonate Recrystallization in Shallow Marine Environments: A Widespread Diagenetic Process Forming Micritized Grains , 1998 .

[75]  H. Wiesmann,et al.  The age of the carbonates in martian meteorite ALH84001. , 1999, Science.

[76]  F. Ryerson,et al.  The temperature of formation of carbonate in Martian meteorite ALH84001: constraints from cation diffusion , 1999 .