Second-order sufficient optimality conditions for the optimal control of navier-stokes equations

In this paper sufficient optimality conditions are established for optimal control of both steady-state and instationary Navier-Stokes equations. The second-order condition requires coercivity of the Lagrange function on a suitable subspace together with first-order necessary conditions. It ensures local optimality of a reference function in a Ls -neighborhood, whereby the underlying analysis allows to use weaker norms than L∞ .

[1]  H. Brezis Analyse fonctionnelle : théorie et applications , 1983 .

[2]  Eduardo Casas 4. An Optimal Control Problem Governed by the Evolution Navier-Stokes Equations , 1998 .

[3]  Fredi Tr Oltzsch,et al.  Lipschitz stability of solutions to linear-quadratic parabolic control problems with respect to perturbations , 1998 .

[4]  Kazufumi Ito,et al.  Optimal Controls of Navier--Stokes Equations , 1994 .

[5]  J. Zowe,et al.  Second-order necessary and sufficient optimality conditions for infinite-dimensional programming problems , 1979 .

[6]  Sri Sritharan,et al.  Necessary and sufficient conditions for optimal controls in viscous flow problems , 1994, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[7]  Fredi Tröltzsch,et al.  On the Lagrange--Newton--SQP Method for the Optimal Control of Semilinear Parabolic Equations , 1999, SIAM J. Control. Optim..

[8]  Eduardo Casas,et al.  UNIFORM CONVERGENCE OF THE FEM. APPLICATIONS TO STATE CONSTRAINED CONTROL PROBLEMS , 2002 .

[9]  M. Hinze Optimal and instantaneous control of the instationary Navier-Stokes equations , 2002 .

[10]  J. Davenport Editor , 1960 .

[11]  J. Frédéric Bonnans,et al.  Optimal Control Problems with Partially Polyhedric Constraints , 1999 .

[12]  Fredi Tröltzsch,et al.  Second Order Sufficient Optimality Conditions for a Nonlinear Elliptic Boundary Control Problem , 1996 .

[13]  S. Sritharan Dynamic programming of the Navier-Stokes equations , 1991 .

[14]  Karl Kunisch,et al.  Second Order Methods for Optimal Control of Time-Dependent Fluid Flow , 2001, SIAM J. Control. Optim..

[15]  Fredi Tröltzsch,et al.  SUFFICIENT OPTIMALITY IN A PARABOLIC CONTROL PROBLEM , 2002 .

[16]  Fredi Tröltzsch,et al.  Lipschitz stability of optimal controls for the steady-state Navier-Stokes equations , 2003 .

[17]  Fredi Tröltzsch,et al.  Second Order Sufficient Optimality Conditions for Nonlinear Parabolic Control Problems with State Constraints , 2000 .

[18]  Fredi Tröltzsch,et al.  On an Augmented Lagrangian SQP Method for a Class of Optimal Control Problems in Banach Spaces , 2002, Comput. Optim. Appl..

[19]  Jacques-Louis Lions,et al.  Mathematical Analysis and Numerical Methods for Science and Technology: Volume 5 Evolution Problems I , 1992 .

[20]  Eduardo Casas,et al.  Second Order Optimality Conditions for Semilinear Elliptic Control Problems with Finitely Many State Constraints , 2001, SIAM J. Control. Optim..

[21]  Fredi Tröltzsch,et al.  Second Order Sufficient Optimality Conditions for Some State-constrained Control Problems of Semilinear Elliptic Equations , 2000, SIAM J. Control. Optim..

[22]  J. F. Bonnans,et al.  Second-Order Analysis for Control Constrained Optimal Control Problems of Semilinear Elliptic Systems , 1998 .

[23]  Hantaek Bae Navier-Stokes equations , 1992 .

[24]  Max D. Gunzburger,et al.  Analysis and Approximation of the Velocity Tracking Problem for Navier-Stokes Flows with Distributed Control , 2000, SIAM J. Numer. Anal..

[25]  Max Gunzburger,et al.  The Velocity Tracking Problem for Navier--Stokes Flows with Bounded Distributed Controls , 1999 .

[26]  R. Temam,et al.  On some control problems in fluid mechanics , 1990 .

[27]  W. Hager,et al.  Optimality, stability, and convergence in nonlinear control , 1995 .