Influence of manganese acetyl acetonate on the cure-kinetic parameters of cyanate ester–epoxy blend systems in fusion relevant magnets winding packs

Blending cyanate ester (CE) with epoxy resins offers the possibility to manufacture radiation resistant insulations at a low price compared to pure CE materials. Therefore, it is of special interest to study the influence of the CE content and also the effect of catalyst on the curing behavior of these insulation systems. Here, we present the curing behavior of the CE–epoxy blend system studied by non-isothermal differential scanning calorimetry in combination with Fourier infra red (FTIR) spectroscopy. Effect of amount of catalyst, compositional change, heating rate on the conversion, and enthalpy change were studied. The activation energy (Ea) and pre-exponential factor (A), rate constant of different blend systems with and without catalyst, were computed from the modified Ozawa and Kissinger model equations using isoconversional methods. Studies suggested that cure-kinetic parameters calculated from both the models are found to be matching. It was observed that the activation energy is less in the case of catalyzed system than the uncatalyzed system. Predicting the cure profile of this resin system is important under a given set of conditions for achieving the desired, controlled polymerization. This is the first report on the studies of the cure-kinetic parameters of the CE–epoxy blend system, and these observations will definitely pave the way for tuning the process parameters and temperature profile for achieving the desired properties of these insulation systems in fusion relevant magnetic winding packs.

[1]  S. Shaw,et al.  Studying water uptake effects in resins based on cyanate ester/bismaleimide blends , 2000 .

[2]  W. Tänzer,et al.  Reaktionen polyfunktioneller Cyansäureester mit polyfunktionellen Glycidethern. 1. Identifizierung der gebildeten Strukturelemente , 1989 .

[3]  A. Cherdoud-Chihani,et al.  Étude par DSC de la reticulation de systèmes DGEBA/polyacides , 1997 .

[4]  I. Yilgor,et al.  Isocyanate–epoxy reactions in bulk and solution , 1989 .

[5]  J. M. Salla,et al.  Comparative studies on the non-isothermal DSC curing kinetics of an unsaturated polyester resin using free radicals and empirical models , 1997 .

[6]  E. Grigat,et al.  Synthesis and Reactions of Cyanic Esters , 1967 .

[7]  T. Hemmi,et al.  Critical issues for the manufacture of the ITER TF coil winding pack , 2009 .

[8]  K. Krishnan,et al.  Catalysis of the cure reaction of bisphenol A dicyanate. A DSC study , 1999 .

[9]  R. Schultz,et al.  Chemistries for High Reliability in Electronics Assemblies , 2001 .

[10]  D. Mathew,et al.  Bisphenol A dicyanate-novolac epoxy blend : Cure characteristics, physical and mechanical properties, and application in composites , 1999 .

[11]  I. Hamerton,et al.  Recent Technological Developments in Cyanate Ester Resins , 1998 .

[12]  M. Bauer,et al.  Statistical structural model for the gelation behaviour of cyanate-epoxy polyreactions , 1988 .

[13]  K. S. Kumar,et al.  Investigations on the cure chemistry and polymer properties of benzoxazine-cyanate ester blends , 2009 .

[14]  Ian Hamerton,et al.  Chemistry and Technology of Cyanate Ester Resins , 2013 .

[15]  N. Gabilondo,et al.  Isoconversional kinetic analysis of resol-clay nanocomposites , 2009 .

[16]  A. Mianowski,et al.  Thermal analysis of polyolefin and liquid paraffin mixtures , 2003 .

[17]  M. R. Kessler,et al.  Cure kinetics of thermosetting bisphenol E cyanate ester , 2008 .

[18]  J. Karger‐Kocsis,et al.  Influence of fillers and additives on the cure kinetics of an epoxy/anhydride resin , 2007 .

[19]  M. Grenier-loustalot,et al.  Influence of the stoichiometry of epoxy-cyanate systems (non-catalyzed and catalyzed) on molten state reactivity , 1997 .

[20]  I. Mondragon,et al.  Cure kinetics of a cobalt catalysed dicyanate ester monomer in air and argon atmospheres from DSC data , 2004 .

[21]  Heping Liu,et al.  Mechanism and kinetics of polymerization of a dicyanate ester resin photocatalysed by an organometallic compound , 1996 .

[22]  P. Halley,et al.  Studies on the gelation of photocatalysed dicyanate ester resins , 1997 .

[23]  D. Mathew,et al.  Cyanate Ester Resins, Recent Developments , 2001 .

[24]  T. McKenna,et al.  Curing kinetics of an acrylic resin/epoxy resin system using dynamic scanning calorimetry , 1997 .

[25]  J. M. Salla,et al.  Simulation of isothermal cure of A powder coating , 2003 .

[26]  Treliant Fang,et al.  Polycyanate esters: Science and applications , 1995 .

[27]  E. Turi,et al.  Thermal characterization of polymeric materials , 1981 .

[28]  J. Bauer,et al.  Reaktionen polyfunktioneller Cyansäureester mit polyfunktionellen Glycidethern. 2. Reaktionsmodell , 1989 .

[29]  M. Poliks,et al.  NMR investigations of the possible cross reactions between cyanate and epoxy resins , 1994 .

[30]  V. A. Roznyatovsky,et al.  Kinetic Method by Using Calorimetry to Mechanism of Epoxy-amine Cure Reaction , 2004 .