Space Debris Tracking with the Poisson Labeled Multi-Bernoulli Filter

This paper presents a Bayesian filter based solution to the Space Object (SO) tracking problem using simulated optical telescopic observations. The presented solution utilizes the Probabilistic Admissible Region (PAR) approach, which is an orbital admissible region that adheres to the assumption of independence between newborn targets and surviving SOs. These SOs obey physical energy constraints in terms of orbital semi-major axis length and eccentricity within a range of orbits of interest. In this article, Low Earth Orbit (LEO) SOs are considered. The solution also adopts the Partially Uniform Birth (PUB) intensity, which generates uniformly distributed births in the sensor field of view. The measurement update then generates a particle SO distribution. In this work, a Poisson Labeled Multi-Bernoulli (PLMB) multi-target tracking filter is proposed, using the PUB intensity model for the multi-target birth density, and a PAR for the spatial density to determine the initial orbits of SOs. Experiments are demonstrated using simulated SO trajectories created from real Two-Line Element data, with simulated measurements from twelve telescopes located in observatories, which form part of the Falcon telescope network. Optimal Sub-Pattern Assignment (OSPA) and CLEAR MOT metrics demonstrate encouraging multi-SO tracking results even under very low numbers of observations per SO pass.

[1]  Rainer Stiefelhagen,et al.  Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics , 2008, EURASIP J. Image Video Process..

[2]  Radu Horaud,et al.  EM Algorithms for Weighted-Data Clustering with Application to Audio-Visual Scene Analysis , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  Carolin Frueh,et al.  A new multi-target tracking algorithm for a large number of orbiting objects , 2019, Advances in Space Research.

[4]  Thomas Schildknecht,et al.  Orbit determination in satellite geodesy , 2003 .

[5]  Dinesh Atchuthan,et al.  A micro Lie theory for state estimation in robotics , 2018, ArXiv.

[6]  Katta G. Murty,et al.  Letter to the Editor - An Algorithm for Ranking all the Assignments in Order of Increasing Cost , 1968, Oper. Res..

[7]  Ba-Ngu Vo,et al.  An implementation of the multi-sensor generalized labeled multi-Bernoulli filter via Gibbs sampling , 2017, 2017 20th International Conference on Information Fusion (Fusion).

[8]  Ángel F. García-Fernández,et al.  Poisson Multi-Bernoulli Mixture Trackers: Continuity Through Random Finite Sets of Trajectories , 2018, 2018 21st International Conference on Information Fusion (FUSION).

[9]  Kyle J. DeMars,et al.  Probabilistic Initial Orbit Determination Using Gaussian Mixture Models , 2013 .

[10]  Ángel F. García-Fernández,et al.  Poisson Multi-Bernoulli Mixture Filter: Direct Derivation and Implementation , 2017, IEEE Transactions on Aerospace and Electronic Systems.

[11]  Ronald P. S. Mahler,et al.  Advances in Statistical Multisource-Multitarget Information Fusion , 2014 .

[12]  Jason L. Williams,et al.  Marginal multi-bernoulli filters: RFS derivation of MHT, JIPDA, and association-based member , 2012, IEEE Transactions on Aerospace and Electronic Systems.

[13]  Carolin Frueh,et al.  A spherical co-ordinate space parameterisation for orbit estimation , 2016, 2016 IEEE Aerospace Conference.

[14]  Yakov Bar-Shalom,et al.  Multitarget-Multisensor Tracking: Principles and Techniques , 1995 .

[15]  Ronald P. S. Mahler Linear-complexity CPHD filters , 2010, 2010 13th International Conference on Information Fusion.

[16]  Martin David Adams,et al.  The histogram Poisson, labeled multi-Bernoulli multi-target tracking filter , 2020, Signal Process..

[18]  Ronald P. S. Mahler,et al.  Statistical Multisource-Multitarget Information Fusion , 2007 .

[19]  D. Tsoulis,et al.  Assessment of numerical integration methods in the context of low Earth orbits and inter-satellite observation analysis , 2016, Acta Geodaetica et Geophysica.

[20]  Carolin Frueh,et al.  Multi-object filtering for Space Situational Awareness , 2014 .

[21]  Ba-Ngu Vo,et al.  An introduction to force and measurement modeling for space object tracking , 2013, Proceedings of the 16th International Conference on Information Fusion.

[22]  Ba-Ngu Vo,et al.  A Consistent Metric for Performance Evaluation of Multi-Object Filters , 2008, IEEE Transactions on Signal Processing.

[23]  Sylvain Calinon,et al.  Gaussians on Riemannian Manifolds for Robot Learning and Adaptive Control , 2019, ArXiv.

[24]  Brandon A. Jones,et al.  CPHD Filter Birth Modeling Using the Probabilistic Admissible Region , 2018, IEEE Transactions on Aerospace and Electronic Systems.

[25]  Ba-Ngu Vo,et al.  Generalized labeled multi-Bernoulli space-object tracking with joint prediction and update , 2016 .

[26]  S. Askari,et al.  Fuzzy C-Means clustering algorithm for data with unequal cluster sizes and contaminated with noise and outliers: Review and development , 2021, Expert Syst. Appl..

[27]  Kimberlee C. Gresham,et al.  A New Global Array of Optical Telescopes: The Falcon Telescope Network , 2018, Publications of the Astronomical Society of the Pacific.

[28]  Ismail Ugur Dundar,et al.  Improvement of a Space Surveillance Tracking Analysis Tool , 2018 .

[29]  Moriba Jah,et al.  Physics and human-based information fusion for improved resident space object tracking , 2018, Advances in Space Research.

[30]  J. Peláez,et al.  DROMO propagator revisited , 2013 .

[31]  Urs Hugentobler,et al.  SPOOK - A comprehensive Space Surveillance and Tracking analysis tool , 2018 .

[32]  Matthew P. Wilkins,et al.  Probabilistic Admissible Region for Short-Arc Angles-Only Observations , 2014 .

[33]  S.S. Blackman,et al.  Multiple hypothesis tracking for multiple target tracking , 2004, IEEE Aerospace and Electronic Systems Magazine.

[34]  A. Milani,et al.  Orbit determination with very short arcs. I admissible regions , 2004 .

[35]  Martin Adams,et al.  Robust Joint Target Detection and Tracking for Space Situational Awareness , 2018 .

[36]  J. Bennett,et al.  High Performance Orbital Propagation Using a Generic Software Architecture , 2016 .

[37]  Ronald Mahler,et al.  On CPHD filters with track labeling , 2017, Defense + Security.

[38]  K. G. Murty An Algorithm for Ranking All the Assignment in Order of Increasing Cost , 1968 .

[39]  Manuel Stuebler,et al.  A fast implementation of the Labeled Multi-Bernoulli filter using gibbs sampling , 2017, 2017 IEEE Intelligent Vehicles Symposium (IV).

[40]  Matthew P. Wilkins,et al.  PROBABILISTIC ADMISSIBILITY IN ANGLES-ONLY INITIAL ORBIT DETERMINATION , 2014 .

[41]  Ba-Ngu Vo,et al.  OSPA(2): Using the OSPA metric to evaluate multi-target tracking performance , 2017, 2017 International Conference on Control, Automation and Information Sciences (ICCAIS).

[42]  Matthew M. Berry A Variable-Step Double-Integration Multi-Step Integrator , 2004 .