A Review of Cooling in Microchannels

Advancements in electronic performance result in a decrease in device size and increase in power density. Because of these advancements, current cooling mechanisms for electronic devices are beginning to be ineffective. Within the localized hot spots, the materials of the components are reaching temperature values that can lead to improper functioning of the device. Many techniques have been successful in the past, such as heat sinks, cavities or grooves, micro pin-fins, etc., but still do not provide adequate cooling necessary to maintain temperature values low enough for the electronic components to operate. Microchannels, with their large heat transfer surface to volume ratio, cooled with either gas or liquid coolant, have shown some potential. By modifying the walls of the microchannel with fins, pins, or grooves, the cooling performance can be improved. A possible fin material used to increase the surface area of a microchannel is carbon nanotubes, which possess excellent thermal and mechanical properties. Numerical and computational methods needed to analyze flow at the micro- and nano-scale are also introduced. The numerical methods such as lattice Boltzmann, molecular dynamics, and computational fluid dynamics may lessen the cost and time that often accompany experimentation.

[1]  E. Shirani,et al.  Application of LBM in Simulation of Flow in Simple Micro-Geometries and Micro Porous Media , 2007 .

[2]  P. Ajayan,et al.  Controlled growth of carbon nanotubes , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[3]  Jason M. Reese,et al.  Numerical models of gas flow and heat transfer in microscale channels: capturing rarefaction behaviour using a constitutive scaling approach , 2007 .

[4]  S. Kandlikar,et al.  Cooling of Microelectronic Devices Packaged in a Single Chip Module Using Single Phase Refrigerant R-123 , 2009 .

[5]  Mehmet Arik,et al.  Direct Liquid Cooling of High Flux Micro and Nano Electronic Components , 2006, Proceedings of the IEEE.

[6]  J. Liu,et al.  Modelling of Carbon Nanotubes as Heat Sink Fins in Microchannels for Microelectronics Cooling , 2005, Polytronic 2005 - 5th International Conference on Polymers and Adhesives in Microelectronics and Photonics.

[7]  J. Liu,et al.  Integrating nano carbontubes with microchannel cooler , 2004, Proceedings of the Sixth IEEE CPMT Conference on High Density Microsystem Design and Packaging and Component Failure Analysis (HDP '04).

[8]  Convective Heat Transfer for Single-Phase Gases in Microchannel Slip Flow: Analytical Solutions , 2005 .

[9]  Suresh V. Garimella,et al.  The Influence of Surface Roughness on Nucleate Pool Boiling Heat Transfer , 2009 .

[10]  C. Kuo,et al.  Measurements on the Thermal Conductivity of Epoxy/Carbon-Nanotube Composite , 2008 .

[11]  P. Ajayan,et al.  Capillarity‐Driven Assembly of Carbon Nanotubes on Substrates into Dense Vertically Aligned Arrays , 2007 .

[12]  M. Dresselhaus Carbon nanotubes , 1995 .

[13]  S. Chou,et al.  Enhanced Microchannel Heat Sinks Using Oblique Fins , 2009 .

[14]  Stephen A. Solovitz Computational Study of Grooved Microchannel Enhancements , 2008 .

[15]  M. Dresselhaus,et al.  Carbon nanotubes : synthesis, structure, properties, and applications , 2001 .

[16]  H. Honda,et al.  Advances in enhanced boiling heat transfer from electronic components , 2003 .

[17]  D. Wolf-Gladrow Lattice-Gas Cellular Automata and Lattice Boltzmann Models: An Introduction , 2000 .

[18]  Issam Mudawar Assessment of high-heat-flux thermal management schemes , 2001 .

[19]  Wenhua Yu,et al.  Nanofluids: Science and Technology , 2007 .

[20]  Hossein Shokouhmand,et al.  Analysis of Microchannel Heat Sink Performance Using Nanofluids in Turbulent and Laminar Flow Regimes and Its Simulation Using Artificial Neural Network , 2008, Tenth International Conference on Computer Modeling and Simulation (uksim 2008).

[21]  T. Ebbesen,et al.  Exceptionally high Young's modulus observed for individual carbon nanotubes , 1996, Nature.

[22]  Krisztian Kordas,et al.  Chip cooling with integrated carbon nanotube microfin architectures , 2007 .

[23]  Miko Elwenspoek,et al.  Pressure drop of laminar gas flows in a microchannel containing various pillar matrices , 2007 .

[24]  W. Goddard,et al.  Thermal conductivity of carbon nanotubes , 2000 .

[25]  Lattice Boltzmann Method for Steady Gas Flows in Microchannels With Imposed Slip Wall Boundary Condition , 2007 .

[26]  A. Gierczycki,et al.  Experimental Investigation of Heat Transfer to Nanofluids , 2008 .

[27]  H. Honda,et al.  Enhanced boiling heat transfer from electronic components by use of surface microstructures , 2004 .

[28]  Jay N. Zemel,et al.  Gas flow in micro-channels , 1995, Journal of Fluid Mechanics.

[29]  P. Ajayan,et al.  Substrate-site selective growth of aligned carbon nanotubes , 2000 .

[30]  Ado Jorio,et al.  Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications , 2007 .

[31]  Robert Vajtai,et al.  Ultrathick Freestanding Aligned Carbon Nanotube Films , 2007 .

[32]  A. Rao,et al.  Continuous production of aligned carbon nanotubes: a step closer to commercial realization , 1999 .

[33]  M. Shibahara,et al.  A Molecular Dynamics Study on Effects of Nanostructural Clearances at an Interface on Thermal Resistance , 2008 .

[34]  S. Ansumali,et al.  Hydrodynamics beyond Navier-Stokes: exact solution to the lattice Boltzmann hierarchy. , 2007, Physical review letters.

[35]  Teng Wang,et al.  Computational Fluid Dynamics Simulation for On-chip Cooling with Carbon Nanotube Micro-fin Architectures , 2006, 2006 International Conference on Electronic Materials and Packaging.

[36]  Chien-Yuh Yang,et al.  Effect of Nano-Particles on Pool Boiling Heat Transfer of Refrigerant 141b , 2007 .

[37]  T. C. Cheng,et al.  Pool boiling heat transfer on artificial micro-cavity surfaces in dielectric fluid FC-72 , 2006 .

[38]  William W. Yu,et al.  ANOMALOUSLY INCREASED EFFECTIVE THERMAL CONDUCTIVITIES OF ETHYLENE GLYCOL-BASED NANOFLUIDS CONTAINING COPPER NANOPARTICLES , 2001 .

[39]  Jennifer R. Lukes,et al.  Thermal Conductivity of Individual Single-Wall Carbon Nanotubes , 2007 .

[40]  Tsing-Fa Lin,et al.  Saturated flow boiling heat transfer and associated bubble characteristics of FC-72 on a heated micro-pin-finned silicon chip , 2007 .

[41]  M. Saidi,et al.  Analysis of Laminar Flow in the Entrance Region of Parallel Plate Microchannels for Slip Flow , 2009 .

[42]  Satish G. Kandlikar,et al.  An Experimental Study on the Effect of Gravitational Orientation on Flow Boiling of Water in 1054×197μm Parallel Minichannels , 2005 .

[43]  C. Nonino,et al.  Temperature-Dependent Viscosity and Viscous Dissipation Effects in Microchannel Flows With Uniform Wall Heat Flux , 2010 .

[44]  Shiyi Chen,et al.  LATTICE BOLTZMANN METHOD FOR FLUID FLOWS , 2001 .

[45]  H. Hong,et al.  Magnetic field enhanced thermal conductivity in heat transfer nanofluids containing Ni coated single wall carbon nanotubes , 2007 .

[46]  Jinjia Wei,et al.  Experimental study of boiling phenomena and heat transfer performances of FC-72 over micro-pin-finned silicon chips , 2005 .

[47]  P. Ajayan,et al.  Capillarity-driven assembly of two-dimensional cellular carbon nanotube foams , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[48]  P. Ajayan,et al.  Microfabrication technology: Organized assembly of carbon nanotubes , 2002, Nature.

[49]  Z. J. Zhang,et al.  Building carbon nanotubes and their smart architectures , 2002 .

[50]  John R. Thome,et al.  Two-Phase Flow Patterns and Flow-Pattern Maps: Fundamentals and Applications , 2008 .

[51]  J.E. Morris,et al.  Nanopackaging: Nanotechnologies and electronics packaging , 2006, 2007 International Microsystems, Packaging, Assembly and Circuits Technology.

[52]  Frank P. Incropera,et al.  Liquid Cooling of Electronic Devices by Single-Phase Convection , 1999 .

[53]  Satish G. Kandlikar,et al.  Numerical Simulation of Single Phase Liquid Flow in Narrow Rectangular Channels With Structured Roughness Walls , 2009 .

[54]  S. Maruyama A MOLECULAR DYNAMICS SIMULATION OF HEAT CONDUCTION OF A FINITE LENGTH SINGLE-WALLED CARBON NANOTUBE , 2003 .

[55]  Amir Jokar,et al.  A Microchannel Heat Exchanger for Electronics Cooling Applications , 2008 .

[56]  Guoliang Ding,et al.  Heat transfer characteristics of refrigerant-based nanofluid flow boiling inside a horizontal smooth tube , 2009 .

[57]  Ming Hu,et al.  Air flow through carbon nanotube arrays , 2007 .

[58]  Hadis Morkoç,et al.  Enhanced radiative efficiency in GaN quantum dots grown by molecular beam epitaxy , 2003 .

[59]  S. Kabelac,et al.  Experimental convective heat transfer with nanofluids , 2008 .

[60]  Zhimin Mo,et al.  Integrated nanotube microcooler for microelectronics applications , 2005, Proceedings Electronic Components and Technology, 2005. ECTC '05..

[61]  D. Emerson,et al.  Modelling thermal flow in the transition regime using a lattice Boltzmann approach , 2007 .

[62]  Peter J. F. Harris,et al.  Carbon Nanotube Science: Frontmatter , 2009 .

[63]  A. K. De Numerical Modeling of Microscale Mixing Using Lattice Boltzmann Method , 2008 .

[64]  Peter J. F. Harris,et al.  Carbon Nanotube Science: Synthesis, Properties and Applications , 2009 .

[65]  Tilak T. Chandratilleke,et al.  Laminar Convective Heat Transfer in a Microchannel With Internal Fins , 2008 .

[66]  John R. Thome,et al.  Heat Transfer Model for Evaporation of Elongated Bubble Flows in Microchannels , 2002 .

[67]  Zhaonian Cheng,et al.  A Study of CFD Simulation for On-chip Cooling with 2D CNT Micro-fin Array , 2007, 2007 International Symposium on High Density packaging and Microsystem Integration.

[68]  Baowen Li,et al.  Thermal conduction of carbon nanotubes using molecular dynamics , 2005 .

[69]  K. Breuer,et al.  Gaseous slip flow in long microchannels , 1997 .

[70]  Flow Regimes in Microchannel Single-Phase Gaseous Fluid Flow , 2005 .

[71]  S. Cronin,et al.  Rapid prototyping of three-dimensional microstructures from multiwalled carbon nanotubes , 2007 .

[72]  Bingqing Wei,et al.  Assembly of Highly Organized Carbon Nanotube Architectures by Chemical Vapor Deposition , 2003 .

[73]  J. Shiomi,et al.  Molecular Dynamics Simulations of Diffusive-Ballistic Heat Conduction in Carbon Nanotubes , 2007 .

[74]  Peter J. F. Harris,et al.  Carbon Nanotubes and Related Structures: New Materials for the Twenty-first Century , 1999 .

[75]  S. M. Sohel Murshed,et al.  An Experimental Study of Surface Tension-Dependent Pool Boiling Characteristics of Carbon Nanotubes-Nanofluids , 2009 .

[76]  Frank M. Gerner,et al.  EXPERIMENTAL INVESTIGATION OF MICRO/NANO HEAT PIPE WICK STRUCTURES , 2008 .

[77]  M. Kedzierski Effect of CuO Nanoparticle Concentration on R134a/Lubricant Pool Boiling Heat Transfer With Extensive Analysis , 2007 .

[78]  John R. Thome,et al.  Heat Transfer Model for Evaporation in Microchannels, Part I: Presentation of the Model , 2004 .

[79]  Patricia E. Gharagozloo,et al.  A Benchmark Study on the Thermal Conductivity of Nanofluids , 2009 .

[80]  AN EXPERIMENTAL INVESTIGATION OF GASEOUS FLOW CHARACTERISTICS IN MICROCHANNELS , 2002 .

[81]  Bingqing Wei,et al.  Building and testing organized architectures of carbon nanotubes , 2003, SPIE Microtechnologies.