Local quasi hidden variable modelling and violations of Bell-type inequalities by a multipartite quantum state

We introduce for a general correlation scenario a new simulation model, a local quasi hidden variable (LqHV) model, where locality and the measure-theoretic construction inherent to a local hidden variable (LHV) model are preserved but positivity of a simulation measure is dropped. We specify a necessary and sufficient condition for LqHV modelling and, based on this, prove that every quantum correlation scenario admits a LqHV simulation. Via the LqHV approach, we construct analogs of Bell-type inequalities for an N-partite quantum state and find a new analytical upper bound on the maximal violation by an N-partite quantum state of S1 × ⋯ × SN-setting Bell-type inequalities – either on correlation functions or on joint probabilities and for outcomes of an arbitrary spectral type, discrete or continuous. This general analytical upper bound is expressed in terms of the new state dilation characteristics introduced in the present paper and not only traces quantum states admitting an S1 × ⋯ × SN-setting LHV de...

[1]  H. Buhrman,et al.  A Generalized Grothendieck Inequality and Nonlocal Correlations that Require High Entanglement , 2011 .

[2]  Werner,et al.  Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. , 1989, Physical review. A, General physics.

[3]  B. S. Cirel'son Quantum generalizations of Bell's inequality , 1980 .

[4]  J. Krivine Constantes de Grothendieck et fonctions de type positif sur les sphères , 1979 .

[5]  Elena R. Loubenets Threshold bounds for noisy bipartite states , 2005, quant-ph/0512245.

[6]  M. Wolf,et al.  Unbounded Violation of Tripartite Bell Inequalities , 2007, quant-ph/0702189.

[7]  N. Gisin,et al.  Partial list of bipartite Bell inequalities with four binary settings , 2007, 0711.3362.

[8]  B. Tsirelson Quantum analogues of the Bell inequalities. The case of two spatially separated domains , 1987 .

[9]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .

[10]  M. Wolf,et al.  Unbounded Violations of Bipartite Bell Inequalities via Operator Space Theory , 2009, 0910.4228.

[11]  N. Gisin,et al.  From Bell's theorem to secure quantum key distribution. , 2005, Physical review letters.

[12]  Rastislav Královič,et al.  Mathematical Foundations of Computer Science 2009, 34th International Symposium, MFCS 2009, Novy Smokovec, High Tatras, Slovakia, August 24-28, 2009. Proceedings , 2009, MFCS.

[13]  M. Wolf,et al.  Operator space theory: a natural framework for bell inequalities. , 2009, Physical review letters.

[14]  N. Gisin Bell Inequalities: Many Questions, a Few Answers , 2007, quant-ph/0702021.

[15]  N. Gisin,et al.  Grothendieck's constant and local models for noisy entangled quantum states , 2006, quant-ph/0606138.

[16]  M. Junge,et al.  Large Violation of Bell Inequalities with Low Entanglement , 2010, 1007.3043.

[17]  Elena R. Loubenets,et al.  Local hidden variable modelling, classicality, quantum separability and the original Bell inequality , 2009, 0903.4454.

[18]  Quantum states satisfying classical probability constraints , 2004, quant-ph/0406139.

[19]  E. Specker,et al.  The Problem of Hidden Variables in Quantum Mechanics , 1967 .

[20]  A. Fine Hidden Variables, Joint Probability, and the Bell Inequalities , 1982 .

[21]  S. Popescu,et al.  Quantum nonlocality as an axiom , 1994 .

[22]  Elena R. Loubenets,et al.  Multipartite Bell-type inequalities for arbitrary numbers of settings and outcomes per site , 2008, 0804.4046.

[23]  Elena R. Loubenets,et al.  On the probabilistic description of a multipartite correlation scenario with arbitrary numbers of settings and outcomes per site , 2008, 0804.2398.

[24]  R. Cleve,et al.  Nonlocality and communication complexity , 2009, 0907.3584.

[25]  J. Bell On the Einstein-Podolsky-Rosen paradox , 1964 .

[26]  Karol Zyczkowski,et al.  Cones of positive maps and their duality relations , 2009, 0902.4877.

[27]  Thomas Vidick,et al.  Explicit Lower and Upper Bounds on the Entangled Value of Multiplayer XOR Games , 2011 .

[28]  Sophie Laplante,et al.  The communication complexity of non-signaling distributions , 2008, Quantum Inf. Comput..

[29]  Elena R. Loubenets LETTER TO THE EDITOR: Class of bipartite quantum states satisfying the original Bell inequality , 2005 .

[30]  J. Bell On the Problem of Hidden Variables in Quantum Mechanics , 1966 .

[31]  Barbara M Terhal,et al.  Symmetric extensions of quantum States and local hidden variable theories. , 2003, Physical review letters.