Local quasi hidden variable modelling and violations of Bell-type inequalities by a multipartite quantum state
暂无分享,去创建一个
[1] H. Buhrman,et al. A Generalized Grothendieck Inequality and Nonlocal Correlations that Require High Entanglement , 2011 .
[2] Werner,et al. Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. , 1989, Physical review. A, General physics.
[3] B. S. Cirel'son. Quantum generalizations of Bell's inequality , 1980 .
[4] J. Krivine. Constantes de Grothendieck et fonctions de type positif sur les sphères , 1979 .
[5] Elena R. Loubenets. Threshold bounds for noisy bipartite states , 2005, quant-ph/0512245.
[6] M. Wolf,et al. Unbounded Violation of Tripartite Bell Inequalities , 2007, quant-ph/0702189.
[7] N. Gisin,et al. Partial list of bipartite Bell inequalities with four binary settings , 2007, 0711.3362.
[8] B. Tsirelson. Quantum analogues of the Bell inequalities. The case of two spatially separated domains , 1987 .
[9] Albert Einstein,et al. Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .
[10] M. Wolf,et al. Unbounded Violations of Bipartite Bell Inequalities via Operator Space Theory , 2009, 0910.4228.
[11] N. Gisin,et al. From Bell's theorem to secure quantum key distribution. , 2005, Physical review letters.
[12] Rastislav Královič,et al. Mathematical Foundations of Computer Science 2009, 34th International Symposium, MFCS 2009, Novy Smokovec, High Tatras, Slovakia, August 24-28, 2009. Proceedings , 2009, MFCS.
[13] M. Wolf,et al. Operator space theory: a natural framework for bell inequalities. , 2009, Physical review letters.
[14] N. Gisin. Bell Inequalities: Many Questions, a Few Answers , 2007, quant-ph/0702021.
[15] N. Gisin,et al. Grothendieck's constant and local models for noisy entangled quantum states , 2006, quant-ph/0606138.
[16] M. Junge,et al. Large Violation of Bell Inequalities with Low Entanglement , 2010, 1007.3043.
[17] Elena R. Loubenets,et al. Local hidden variable modelling, classicality, quantum separability and the original Bell inequality , 2009, 0903.4454.
[18] Quantum states satisfying classical probability constraints , 2004, quant-ph/0406139.
[19] E. Specker,et al. The Problem of Hidden Variables in Quantum Mechanics , 1967 .
[20] A. Fine. Hidden Variables, Joint Probability, and the Bell Inequalities , 1982 .
[21] S. Popescu,et al. Quantum nonlocality as an axiom , 1994 .
[22] Elena R. Loubenets,et al. Multipartite Bell-type inequalities for arbitrary numbers of settings and outcomes per site , 2008, 0804.4046.
[23] Elena R. Loubenets,et al. On the probabilistic description of a multipartite correlation scenario with arbitrary numbers of settings and outcomes per site , 2008, 0804.2398.
[24] R. Cleve,et al. Nonlocality and communication complexity , 2009, 0907.3584.
[25] J. Bell. On the Einstein-Podolsky-Rosen paradox , 1964 .
[26] Karol Zyczkowski,et al. Cones of positive maps and their duality relations , 2009, 0902.4877.
[27] Thomas Vidick,et al. Explicit Lower and Upper Bounds on the Entangled Value of Multiplayer XOR Games , 2011 .
[28] Sophie Laplante,et al. The communication complexity of non-signaling distributions , 2008, Quantum Inf. Comput..
[29] Elena R. Loubenets. LETTER TO THE EDITOR: Class of bipartite quantum states satisfying the original Bell inequality , 2005 .
[30] J. Bell. On the Problem of Hidden Variables in Quantum Mechanics , 1966 .
[31] Barbara M Terhal,et al. Symmetric extensions of quantum States and local hidden variable theories. , 2003, Physical review letters.