Three-body problem in $d$-dimensional space: ground state, (quasi)-exact-solvability
暂无分享,去创建一个
[1] Quantum four-body system in D dimensions , 2003, physics/0304028.
[2] P. Olver,et al. Quasi-exactly solvable Lie algebras of differential operators in two complex variables , 1991 .
[3] Exact solutions of a new elliptic Calogero–Sutherland model , 2000, hep-th/0006039.
[4] V. Sokolov,et al. Quasi-exact-solvability of the A 2 / G 2 ?> elliptic model: algebraic forms, sl ( 3 ) / g ( 2 ) ?> hidden algebra, and polynomial eigenfunctions , 2014, 1409.7439.
[5] Jr.,et al. The quantum n-body problem in dimension d ⩾ n – 1: ground state , 2017, 1709.01108.
[6] R. Crandall,et al. A class of exactly soluble three-body problems , 1985 .
[7] E. Hylleraas,et al. Neue Berechnung der Energie des Heliums im Grundzustande, sowie des tiefsten Terms von Ortho-Helium , 1929 .
[8] Quantum three-body system in D dimensions , 2002, physics/0203026.
[9] Hidden algebras of the (super) Calogero and Sutherland models , 1997, hep-th/9705219.
[10] A. Turbiner,et al. THE QUANTUM H3 INTEGRABLE SYSTEM , 2010, 1011.2127.
[11] W. Miller,et al. Separation of Variables and SuperintegrabilityThe symmetry of solvable systems , 2018 .
[12] Nathaniel J. Bloomfield,et al. Communication: Three-electron coalescence points in two and three dimensions. , 2015, The Journal of chemical physics.
[13] EXACT SOLVABILITY OF THE CALOGERO AND SUTHERLAND MODELS , 1995, hep-th/9506105.
[14] V. Sokolov,et al. Corrigendum: Quasi-exact-solvability of the A 2 / G 2 ?> Elliptic model: algebraic forms, sl ( 3 ) / g ( 2 ) ?> hidden algebra, polynomial eigenfunctions, (2005 J. Phys. A: Math. Theor. 48 155201) , 2015 .
[15] J. Wolfes. On the three‐body linear problem with three‐body interaction , 1974 .
[16] W. Miller,et al. Superintegrability and higher-order constants for classical and quantum systems , 2010, 1002.2665.
[17] Alexander Turbiner. Lie-algebras and linear operators with invariant subspaces , 1993 .
[18] F. Calogero. Solution of a three-body problem in one-dimension , 1969 .
[19] N. Kamran,et al. Quantification de la cohomologie des algèbres de Lie de champs de vecteurs et fibrés en droites sur des surfaces complexes compactes , 1993 .
[20] Quasi-Exactly-Solvable Many-Body Problems , 1996, hep-th/9606092.
[21] R. Moeckel,et al. Finiteness of relative equilibria of the four-body problem , 2006 .
[22] H. S. Green. Structure and energy levels of light nuclei , 1964 .
[23] A. Turbiner. One-Dimensional Quasi-Exactly Solvable Schr\"odinger Equations , 2016, 1603.02992.
[24] P. Winternitz,et al. An infinite family of solvable and integrable quantum systems on a plane , 2009, 0904.0738.
[25] A. Turbiner. Particular integrability and (quasi)-exact-solvability , 2012, 1206.2907.
[26] A. Turbiner. From Quantum AN (Sutherland) to E8 Trigonometric Model: Space-of-Orbits View ? , 2013 .
[27] P. Olver,et al. Lie algebras of differential operators in two complex variables , 1992 .
[28] Bálint Érdi,et al. Central configurations of four bodies with an axis of symmetry , 2016 .
[29] W. Miller,et al. Superintegrability and higher order integrals for quantum systems , 2009, 0912.2278.
[30] Willard Miller,et al. Three-body problem in 3D space: ground state, (quasi)-exact-solvability , 2016, 1611.08157.
[31] A. Turbiner. Quasi-exactly-solvable problems andsl(2) algebra , 1988 .
[32] Francesco Calogero,et al. Solution of the One‐Dimensional N‐Body Problems with Quadratic and/or Inversely Quadratic Pair Potentials , 1971 .