Effective stress-strain relations for two-dimensional cellular sandwich cores: Homogenization, material models, and properties

[1]  William L. Ko Structural Properties of Superplastically Formed, Diffusion-Bonded Orthogonally Corrugated Core Sandwich Plates , 1980 .

[2]  Y. Bréchet,et al.  A note on the deformation behaviour of two-dimensional model cellular structures , 1996 .

[3]  Jinhee Lee,et al.  Application of homogenization FEM analysis to regular and re-entrant honeycomb structures , 1996, Journal of Materials Science.

[4]  Steven Huybrechts,et al.  Analysis and behavior of grid structures , 1996 .

[5]  J. Penzien,et al.  Effective shear modulus of honeycomb cellular structure , 1964 .

[6]  N. Kikuchi,et al.  Preprocessing and postprocessing for materials based on the homogenization method with adaptive fini , 1990 .

[7]  N. Langrana,et al.  Elastoplastic Micromechanical Modeling of Two-Dimensional Irregular Convex and Nonconvex (Re-entrant) Hexagonal Foams , 1998 .

[8]  Tomas Nordstrand,et al.  Transverse shear stiffness of structural core sandwich , 1994 .

[9]  J. D. Eshelby The determination of the elastic field of an ellipsoidal inclusion, and related problems , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[10]  W. Becker,et al.  The in-plane stiffnesses of a honeycomb core including the thickness effect , 1998 .

[11]  R. Hill The Elastic Behaviour of a Crystalline Aggregate , 1952 .

[12]  Ahmed K. Noor,et al.  Assessment of continuum models for sandwich panel honeycomb cores , 1997 .

[13]  T.David Kim,et al.  Shear modulus of core materials with arbitrary polygonal shape , 1983 .

[14]  S. Tsai,et al.  Analysis and Optimum Design of Composite Grid Structures , 1996 .

[15]  R. Lakes Materials with structural hierarchy , 1993, Nature.

[16]  Lorna J. Gibson,et al.  Effects of solid distribution on the stiffness and strength of metallic foams , 1998 .

[17]  Buckling properties of 2D regular elastomeric honeycombs , 1997 .

[18]  Salvatore Torquato,et al.  Effective mechanical and transport properties of cellular solids , 1998 .

[19]  W. Becker,et al.  A mechanical model for two-dimensional cellular sandwich cores with general geometry , 2000 .

[20]  M. Ashby,et al.  The effect of non-uniformity on the in-plane modulus of honeycombs , 1999 .

[21]  I. Ebcioǧlu,et al.  Effect of Cell Geometry on the Shear Modulus and on Density of Sandwich Panel Cores , 1961 .

[22]  An energetic homogenisation procedure for the elastic properties of general cellular sandwich cores , 2001 .

[23]  John H. Kinney,et al.  Elastic constants of cellular structures , 1997 .

[24]  A. L. Kalamkarov,et al.  Numerical design of thin-walled structural members on account of their strength , 1993 .

[25]  Joachim L. Grenestedt,et al.  Influence of wavy imperfections in cell walls on elastic stiffness of cellular solids , 1998 .

[26]  S. Shtrikman,et al.  On some variational principles in anisotropic and nonhomogeneous elasticity , 1962 .

[27]  Stelios Kyriakides,et al.  In-plane biaxial crushing of honeycombs—: Part II: Analysis , 1999 .

[28]  Lorna J. Gibson,et al.  Size effects in ductile cellular solids. Part I: modeling , 2001 .

[29]  Lorna J. Gibson,et al.  The effects of non-periodic microstructure and defects on the compressive strength of two-dimensional cellular solids , 1997 .

[30]  William L. Ko,et al.  Elastic constants for superplastically formed/diffusion-bonded sandwich structures , 1979 .

[31]  E. E. Underwood,et al.  Shear Modulus of New Sandwich Cores , 1980 .

[32]  J. B. Park,et al.  Negative Poisson's ratio polymeric and metallic foams , 1988 .

[33]  Leif A. Carlsson,et al.  Evaluation of transverse shear stiffness of structural core sandwich plates , 1997 .

[34]  M. Ashby,et al.  The mechanics of three-dimensional cellular materials , 1982, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[35]  K. Evans,et al.  Models for the elastic deformation of honeycombs , 1996 .

[36]  C. Libove,et al.  Elastic Constants for Corrugated-Core Sandwich Plates , 1951 .

[37]  Ahmed K. Noor,et al.  Computational Models for Sandwich Panels and Shells , 1996 .

[38]  Elastic collapse of honeycombs under out-of-plane pressure , 1991 .

[39]  Michel Grédiac,et al.  A finite element study of the transverse shear in honeycomb cores , 1993 .

[40]  L. Gibson,et al.  Behavior of intact and damaged honeycombs: a finite element study , 1999 .

[41]  Pappu L. N. Murthy,et al.  Fiber Composite Sandwich Thermostructural Behavior: Computational Simulation , 1988 .

[42]  R. Lakes Foam Structures with a Negative Poisson's Ratio , 1987, Science.

[43]  Hans Muhlhaus,et al.  Continuum models for materials with microstructure , 1995 .

[44]  R. Hill,et al.  XLVI. A theory of the plastic distortion of a polycrystalline aggregate under combined stresses. , 1951 .

[45]  Michael F. Ashby,et al.  Failure surfaces for cellular materials under multiaxial loads—I.Modelling , 1989 .

[46]  N. Langrana,et al.  Effects of morphology and orientation on the behavior of two-dimensional hexagonal foams and application in a re-entrant foam anchor model , 1998 .

[47]  Hanxing Zhu,et al.  The in-plane non-linear compression of regular honeycombs , 2000 .

[48]  C. M. Stone,et al.  A constitutive model for two-dimensional nonlinear elastic foams , 1989 .

[49]  T. L. Warren Negative Poisson’s ratio in a transversely isotropic foam structure , 1990 .

[50]  I. Burgess,et al.  A theoretical approach to the deformation of honeycomb based composite materials , 1979 .

[51]  J. Willis,et al.  Variational Principles for Inhomogeneous Non-linear Media , 1985 .

[52]  Pin Tong,et al.  The derivation of equivalent constitutive equations of honeycomb structures by a two scale method , 1995 .

[53]  William James Stronge,et al.  Elasto-plastic yield limits and deformation laws for transversely crushed honeycombs , 1988 .

[54]  Joseph N. Grima,et al.  A novel mechanism for generating auxetic behaviour in reticulated foams: missing rib foam model , 2000 .

[55]  Anthony M. Waas,et al.  The inplane elastic properties of circular cell and elliptical cell honeycombs , 2000 .

[56]  T. Ogawa,et al.  Compressive strength of various honeycombs , 1993 .

[57]  S. D. Papka,et al.  Biaxial crushing of honeycombs: - Part 1: Experiments , 1999 .

[58]  S. Kelsey,et al.  The Shear Modulus of Foil Honeycomb Cores , 1958 .

[59]  W. S. Hemp On a theory of sandwich construction , 1948 .

[60]  R. Christensen,et al.  Basic two-dimensional core types for sandwich structures , 2000 .

[61]  H. G. Allen,et al.  CHAPTER 2 – SANDWICH BEAMS , 1969 .

[62]  Liviu Librescu,et al.  Recent developments in the modeling and behavior of advanced sandwich constructions: a survey , 2000 .

[63]  H. Schreyer,et al.  ANISOTROPIC PLASTICITY MODEL FOR FOAMS AND HONEYCOMBS , 1994 .

[64]  Robert D. Adams,et al.  The dynamic shear properties of structural honeycomb materials , 1993 .

[65]  L. M. Habip A survey of modern developments in the analysis of sandwich structures. , 1965 .

[66]  A. Kalamkarov,et al.  Analysis, design, and optimization of composite structures , 1997 .

[67]  G. Marsh THE MEAT IN THE SANDWICH , 1999 .

[68]  Local buckling of honeycomb sandwich plates under action of transverse shear forces , 1994 .

[69]  W. Becker,et al.  Effective elastic properties of hexagonal and quadrilateral grid structures , 1999 .

[70]  H. E. Hunt The mechanical strength of ceramic honeycomb monoliths as determined by simple experiments : Advanced materials , 1993 .

[71]  E. Sanchez-Palencia,et al.  Homogenization Techniques for Composite Media , 1987 .

[72]  Wilfried Becker,et al.  A refined analysis of the effective elasticity tensor for general cellular sandwich cores , 2001 .

[73]  Fodil Meraghni,et al.  Mechanical behaviour of cellular core for structural sandwich panels , 1999 .

[74]  W. Becker,et al.  Effective elastic properties of triangular grid structures , 1999 .

[75]  Tom Bitzer,et al.  Honeycomb Marine Applications , 1994 .

[76]  H. M. Princen,et al.  The nonlinear elastic behavior of polydisperse hexagonal foams and concentrated emulsions , 1991 .

[77]  S. D. Papka,et al.  In-plane compressive response and crushing of honeycomb , 1994 .

[78]  H. G. Allen Analysis and design of structural sandwich panels , 1969 .

[79]  L. M. Habip A review of recent russian work on sandwich structures. , 1964 .

[80]  Ahmed K. Noor,et al.  Hierarchical adaptive modeling of structural sandwiches and multilayered composite panels , 1994 .

[81]  Roderic S. Lakes,et al.  Nonlinear Analysis of the Poisson's Ratio of Negative Poisson's Ratio Foams , 1995 .

[82]  V.P.W. Shim,et al.  Microdynamics of Crushing in Cellular Solids , 1988 .

[83]  W. Stronge,et al.  Plane punch indentation of a ductile honeycomb , 1989 .

[84]  B. D. Caddock,et al.  Microporous materials with negative Poisson's ratios. I. Microstructure and mechanical properties , 1989 .

[85]  Michael F. Ashby,et al.  The out-of-plane properties of honeycombs , 1992 .

[86]  Wilfried Becker,et al.  Closed-form analysis of the thickness effect of regular honeycomb core material , 2000 .

[87]  R. Hsieh,et al.  Mechanics of micropolar media , 1982 .

[88]  Matthew J. Silva,et al.  The effects of non-periodic microstructure on the elastic properties of two-dimensional cellular solids , 1995 .

[89]  Richard M. Christensen,et al.  Mechanics of cellular and other low-density materials , 2000 .

[90]  Michael F. Ashby,et al.  Buckling of honeycombs under in-plane biaxial stresses , 1992 .

[91]  Kenneth E. Evans,et al.  The design of doubly curved sandwich panels with honeycomb cores , 1991 .

[92]  Shear Modulus of New Sandwich Cores Made of Superplastic Sheet , 1979 .

[93]  Lorna J. Gibson,et al.  Modelling the mechanical behavior of cellular materials , 1989 .

[94]  Pappu L. N. Murthy,et al.  Composite sandwich thermostructural behavior - Computational simulation , 1986 .

[95]  Guangyu Shi,et al.  Equivalent transverse shear stiffness of honeycomb cores , 1995 .

[96]  Alexander G. Kolpakov,et al.  Determination of the average characteristics of elastic frameworks , 1985 .

[97]  A. Reuss,et al.  Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle . , 1929 .

[98]  W. E. Warren,et al.  Foam mechanics: the linear elastic response of two-dimensional spatially periodic cellular materials , 1987 .

[99]  The thermoelasticity problem for structurally nonuniform shells of regular structure , 1989 .

[100]  Alexander L. Kalamkarov,et al.  Composite and Reinforced Elements of Construction , 1992 .

[101]  Charles E.S. Ueng,et al.  Shear modulus of superplastically formed sandwich cores , 1979 .

[102]  A. Kalamkarov ON THE DETERMINATION OF EFFECTIVE CHARACTERISTICS OF CELLULAR PLATES AND SHELLS OF PERIODIC STRUCTURE , 1987 .

[103]  L. Gibson,et al.  The effects of cell face curvature and corrugations on the stiffness and strength of metallic foams , 1998 .