From CO2 methanation to ambitious long-chain hydrocarbons: alternative fuels paving the path to sustainability.

The clean and sustainable CO2 reutilization toward products of higher value is of great interest in a background of established environmental concerns and reducing the use of fossil fuels. As promising alternative fuels, hydrocarbons are more valuable than CO, alcohols or formate and can be directly used in existing infrastructures with high energy densities. The prominent development of catalysts capable of selectively converting CO2 into hydrocarbons, from methane to short olefins and long carbon-chains, has been reflected in an expanding volume of exploratory works, which suitably demand interpretive and continuous revision. In the past decades, conventional studies on the thermochemical conversion of CO2 have consistently unlocked meaningful pathways toward the synthesis of hydrocarbons covering a fairly wide range of molecular weights. Conversely, both electrochemically and photochemically driven reactions have only now started to unveil encouraging results, with an extensive number of critical citations outlining the continuous emergence of very recently published reports. In a field in need of urgent development, the authors provide, in a clear form, a detailed retrospective on benchmark catalysts, pioneering approaches and competitive developments in this subject, mechanistic difficulties, emerging stability issues, and reactor design, while highlighting the latest noteworthy reports. Most importantly, this review highlights the advances toward an increase in the hydrocarbon chain-length in the synthesis of highly competitive alternative fuels. Comparisons of valuable thermochemical, electrochemical and photochemically driven strategies in the conversion of CO2 to hydrocarbons are expected to serve as guidelines to disclose promising pathways in a field where mechanistic uncertainties remain a bottleneck for determining the product selectivity. The authors summarize leading and inquisitive perspectives with a focus on the viability and practicability of each approach at a larger scale, while tentatively paving the way to stimulate progress in this field.

[1]  Wei Xiao,et al.  Enhanced photocatalytic CO₂-reduction activity of anatase TiO₂ by coexposed {001} and {101} facets. , 2014, Journal of the American Chemical Society.

[2]  P. Yang,et al.  Copper nanoparticle ensembles for selective electroreduction of CO2 to C2–C3 products , 2017, Proceedings of the National Academy of Sciences.

[3]  Jan Kopyscinski,et al.  The effect of synthesis parameters on ordered mesoporous nickel alumina catalyst for CO2 methanation , 2018 .

[4]  H. Ho,et al.  Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications. , 2014, Chemical Society reviews.

[5]  K. P. Jong,et al.  Catalysts for Production of Lower Olefins from Synthesis Gas: A Review , 2013 .

[6]  F. Kapteijn,et al.  Challenges in the Greener Production of Formates/Formic Acid, Methanol, and DME by Heterogeneously Catalyzed CO2 Hydrogenation Processes , 2017, Chemical reviews.

[7]  Nunzio Russo,et al.  Nanostructured TiO2/KIT-6 catalysts for improved photocatalytic reduction of CO2 to tunable energy products , 2015 .

[8]  Matthew W. Kanan,et al.  Probing the Active Surface Sites for CO Reduction on Oxide-Derived Copper Electrocatalysts. , 2015, Journal of the American Chemical Society.

[9]  G. Somorjai,et al.  Copper Nanocrystals Encapsulated in Zr-based Metal-Organic Frameworks for Highly Selective CO2 Hydrogenation to Methanol. , 2016, Nano letters.

[10]  P. Strasser,et al.  Controlling the selectivity of CO2 electroreduction on copper: The effect of the electrolyte concentration and the importance of the local pH , 2016 .

[11]  K. Ohta,et al.  Effect of CO2 pressure on photocatalytic reduction of CO2 using TiO2 in aqueous solutions , 1996 .

[12]  Antonio J. Martín,et al.  Towards sustainable fuels and chemicals through the electrochemical reduction of CO2: lessons from water electrolysis , 2015 .

[13]  A. Anagnostopoulos,et al.  Electrochemical reduction of CO2 at Cu + Au electrodes , 1992 .

[14]  Pratim Biswas,et al.  Photocatalytic reduction of CO2 with H2O on mesoporous silica supported Cu/TiO2 catalysts , 2010 .

[15]  R. Behm,et al.  Reaction Intermediates and Side Products in the Methanation of CO and CO2 over Supported Ru Catalysts in H2-Rich Reformate Gases† , 2011 .

[16]  M. A. Henderson,et al.  An Infrared Study of the Hydrogenation of Carbon Dioxide on Supported Rhodium Catalysts. , 1983 .

[17]  Pingquan Wang,et al.  One-pot synthesis of rutile TiO2 nanoparticle modified anatase TiO2 nanorods toward enhanced photocatalytic reduction of CO2 into hydrocarbon fuels , 2012 .

[18]  E. Thimsen,et al.  Plasmonic solar water splitting , 2012 .

[19]  Roel van de Krol,et al.  Water-splitting catalysis and solar fuel devices: artificial leaves on the move. , 2013, Angewandte Chemie.

[20]  Gengfeng Zheng,et al.  Single-Atomic Cu with Multiple Oxygen Vacancies on Ceria for Electrocatalytic CO2 Reduction to CH4 , 2018, ACS Catalysis.

[21]  Xue-qing Gong,et al.  Elucidation of the high CO2 reduction selectivity of isolated Rh supported on TiO2: a DFT study , 2016 .

[22]  M. Götz,et al.  Review on methanation – From fundamentals to current projects , 2016 .

[23]  J. Sarmiento,et al.  Anthropogenic CO2 Uptake by the Ocean Based on the Global Chlorofluorocarbon Data Set , 2003, Science.

[24]  Li Shi,et al.  Single‐Atom Catalysts: Emerging Multifunctional Materials in Heterogeneous Catalysis , 2018 .

[25]  Wenxiao Guo,et al.  Surface-Plasmon-Driven Hot Electron Photochemistry. , 2017, Chemical reviews.

[26]  Ping He,et al.  A reversible lithium–CO2 battery with Ru nanoparticles as a cathode catalyst , 2017 .

[27]  Wenzheng Li,et al.  CO2 Electroreduction to Hydrocarbons on Carbon-Supported Cu Nanoparticles , 2014 .

[28]  Jiaguo Yu,et al.  Hybrid carbon@TiO2 hollow spheres with enhanced photocatalytic CO2 reduction activity , 2017 .

[29]  J. Wu,et al.  Photoreduction of CO2 in an optical-fiber photoreactor: Effects of metals addition and catalyst carrier , 2008 .

[30]  Gastón O Larrazábal,et al.  Building Blocks for High Performance in Electrocatalytic CO2 Reduction: Materials, Optimization Strategies, and Device Engineering. , 2017, The journal of physical chemistry letters.

[31]  M. Fleischer,et al.  Improvement of the selectivity of the electrochemical conversion of CO2 to hydrocarbons using cupreous electrodes with in-situ oxidation by oxygen , 2017 .

[32]  K. Jun,et al.  Hydrogenation of carbon dioxide over alumina supported Fe-K catalysts , 1996 .

[33]  J. Limtrakul,et al.  CO2 Electrochemical Reduction to Methane and Methanol on Copper-Based Alloys: Theoretical Insight , 2015 .

[34]  H. Jeon,et al.  Prism-Shaped cu Nanocatalysts for Electrochemical Co2 Reduction to Ethylene , 2018 .

[35]  Mbongiseni W. Dlamini,et al.  Effects of Co and Ru Intimacy in Fischer–Tropsch Catalysts Using Hollow Carbon Sphere Supports: Assessment of the Hydrogen Spillover Processes , 2017 .

[36]  Dong Ha Kim,et al.  Plasmon-Sensitized Graphene/TiO2 Inverse Opal Nanostructures with Enhanced Charge Collection Efficiency for Water Splitting. , 2017, ACS applied materials & interfaces.

[37]  Yang-Fan Xu,et al.  A CsPbBr3 Perovskite Quantum Dot/Graphene Oxide Composite for Photocatalytic CO2 Reduction. , 2017, Journal of the American Chemical Society.

[38]  G. Somorjai,et al.  Evidence of highly active cobalt oxide catalyst for the Fischer-Tropsch synthesis and CO2 hydrogenation. , 2014, Journal of the American Chemical Society.

[39]  S. Pokhrel,et al.  Highly active Co–Al2O3-based catalysts for CO2 methanation with very low platinum promotion prepared by double flame spray pyrolysis , 2016 .

[40]  L. Laurens,et al.  Microalgae as biodiesel & biomass feedstocks: Review & analysis of the biochemistry, energetics & economics , 2010 .

[41]  Frederick W. Williams,et al.  Heterogeneous catalytic CO2 conversion to value-added hydrocarbons , 2010 .

[42]  P. Ajayan,et al.  Incorporation of Nitrogen Defects for Efficient Reduction of CO2 via Two-Electron Pathway on Three-Dimensional Graphene Foam. , 2016, Nano letters.

[43]  Qinghong Zhang,et al.  MgO- and Pt-Promoted TiO2 as an Efficient Photocatalyst for the Preferential Reduction of Carbon Dioxide in the Presence of Water , 2014 .

[44]  P. Strasser,et al.  Tuning Catalytic Selectivity at the Mesoscale via Interparticle Interactions , 2016 .

[45]  M. Herskowitz,et al.  Novel bifunctional catalysts based on crystalline multi-oxide matrices containing iron ions for CO2 hydrogenation to liquid fuels and chemicals. , 2016, Faraday discussions.

[46]  Jinhua Ye,et al.  Photocatalytic reduction of carbon dioxide by hydrous hydrazine over Au-Cu alloy nanoparticles supported on SrTiO3/TiO2 coaxial nanotube arrays. , 2015, Angewandte Chemie.

[47]  P. Forzatti,et al.  CO2 hydrogenation to lower olefins on a high surface area K-promoted bulk Fe-catalyst , 2017 .

[48]  Gongxuan Lu,et al.  Highly active and stable nano NiO–MgO catalyst encapsulated by silica with a core–shell structure for CO2 methanation , 2014 .

[49]  Ping Liu,et al.  Highly active copper-ceria and copper-ceria-titania catalysts for methanol synthesis from CO2 , 2014, Science.

[50]  Haotian Wang,et al.  Isolated Ni single atoms in graphene nanosheets for high-performance CO2 reduction , 2018 .

[51]  Qinghong Zhang,et al.  Photocatalytic and photoelectrocatalytic reduction of CO2 using heterogeneous catalysts with controlled nanostructures. , 2016, Chemical communications.

[52]  Jinlong Gong,et al.  CO2 photo-reduction: insights into CO2 activation and reaction on surfaces of photocatalysts , 2016 .

[53]  Bruce E Logan,et al.  Direct biological conversion of electrical current into methane by electromethanogenesis. , 2009, Environmental science & technology.

[54]  Kimfung Li,et al.  Cu2O/Reduced Graphene Oxide Composites for the Photocatalytic Conversion of CO2 , 2014, ChemSusChem.

[55]  M. McManus,et al.  Towards Carbon-Neutral CO2 Conversion to Hydrocarbons. , 2015, ChemSusChem.

[56]  Dong Ha Kim,et al.  Toward an Effective Control of the H2 to CO Ratio of Syngas through CO2 Electroreduction over Immobilized Gold Nanoparticles on Layered Titanate Nanosheets , 2018 .

[57]  Yong Yang,et al.  Effect of manganese on an iron-based Fischer–Tropsch synthesis catalyst prepared from ferrous sulfate , 2007 .

[58]  C. Cannas,et al.  CO2 methanation on hard-templated NiOCeO2 mixed oxides , 2017 .

[59]  Jiaguo Yu,et al.  CdS/Graphene Nanocomposite Photocatalysts , 2015 .

[60]  Zhenpeng Hu,et al.  CO2 methanation on Ru-doped ceria , 2011 .

[61]  Ying Dai,et al.  An anion exchange approach to Bi2WO6 hollow microspheres with efficient visible light photocatalytic reduction of CO2 to methanol. , 2012, Chemical communications.

[62]  J. Moulijn,et al.  Enabling Electrocatalytic Fischer–Tropsch Synthesis from Carbon Dioxide Over Copper-based Electrodes , 2008 .

[63]  A. Chaumonnot,et al.  Improving the catalytic performances of metal nanoparticles by combining shape control and encapsulation , 2015 .

[64]  Jin Mao,et al.  Opposite photocatalytic activity orders of low-index facets of anatase TiO₂ for liquid phase dye degradation and gaseous phase CO₂ photoreduction. , 2014, Physical chemistry chemical physics : PCCP.

[65]  Tsunehiro Tanaka,et al.  Photocatalytic conversion of CO2 in water over layered double hydroxides. , 2012, Angewandte Chemie.

[66]  Wenguang Tu,et al.  Solution-chemical route to generalized synthesis of metal germanate nanowires with room-temperature, light-driven hydrogenation activity of CO2 into renewable hydrocarbon fuels. , 2014, Inorganic chemistry.

[67]  G. Somorjai,et al.  CO2 Hydrogenation Studies on Co and CoPt Bimetallic Nanoparticles Under Reaction Conditions Using TEM, XPS and NEXAFS , 2011 .

[68]  A. G. Piken,et al.  Heterogeneous methanation: Steady-state rate of CO hydrogenation on supported ruthenium, nickel and rhenium , 1975 .

[69]  Philip N. Ross,et al.  Improved Oxygen Reduction Activity on Pt3Ni(111) via Increased Surface Site Availability , 2007, Science.

[70]  G. Mul,et al.  Palladium-gold catalyst for the electrochemical reduction of CO2 to C1-C5 hydrocarbons. , 2016, Chemical communications.

[71]  Y. Tachibana,et al.  Monodisperse and size-tunable PbS colloidal quantum dots via heterogeneous precursors , 2017 .

[72]  Zhenyi Zhang,et al.  Au/Pt Nanoparticle-Decorated TiO2 Nanofibers with Plasmon-Enhanced Photocatalytic Activities for Solar-to-Fuel Conversion , 2013 .

[73]  H. Schobert,et al.  Photoinduced activation of CO2 on Ti-based heterogeneous catalysts: Current state, chemical physics-based insights and outlook , 2009 .

[74]  Jochen A. H. Dreyer,et al.  Influence of the oxide support reducibility on the CO2 methanation over Ru-based catalysts , 2017 .

[75]  Dong Ha Kim,et al.  Plasmon-Mediated Electrocatalysis for Sustainable Energy: From Electrochemical Conversion of Different Feedstocks to Fuel Cell Reactions , 2018 .

[76]  Mohammad Khaja Nazeeruddin,et al.  Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts , 2014, Science.

[77]  Seunghwan Lee,et al.  Electrode Build-Up of Reducible Metal Composites toward Achievable Electrochemical Conversion of Carbon Dioxide. , 2016, ChemSusChem.

[78]  Xuxu Wang,et al.  Ultrathin nanosheets of molecular sieve SAPO-5: A new photocatalyst for efficient photocatalytic reduction of CO2 with H2O to methane , 2016 .

[79]  C. Mirodatos,et al.  CO hydrogenation on a nickel catalyst. I: Kinetics and modeling of a low temperature sintering process , 1994 .

[80]  Y. Mok,et al.  Plasma-assisted catalytic methanation of CO and CO2 over Ni–zeolite catalysts , 2013 .

[81]  F. Williams,et al.  C2-C5+ olefin production from CO2 hydrogenation using ceria modified Fe/Mn/K catalysts , 2011 .

[82]  Thomas F. Jaramillo,et al.  Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces. , 2014, Journal of the American Chemical Society.

[83]  Zhang Zhang,et al.  Metal–CO2 Batteries on the Road: CO2 from Contamination Gas to Energy Source , 2017, Advanced materials.

[84]  F. Saladin,et al.  Photosynthesis of CH4 at a TiO2 surface from gaseous H2O and CO2 , 1995 .

[85]  Jinhua Ye,et al.  Ion-exchange synthesis of a micro/mesoporous Zn2GeO4 photocatalyst at room temperature for photoreduction of CO2. , 2011, Chemical communications.

[86]  Gongxuan Lu,et al.  Enhancing catalytic activity and stability for CO2 methanation on Ni@MOF-5 via control of active species dispersion. , 2015, Chemical communications.

[87]  Congjun Wang,et al.  Size-dependent photocatalytic reduction of CO2 with PbS quantum dot sensitized TiO2 heterostructured photocatalysts , 2011 .

[88]  H. Kolbe Ueber Synthese der Salicylsäure , 1860 .

[89]  T. He,et al.  Controlled synthesis of cobalt telluride superstructures for the visible light photo-conversion of carbon dioxide into methane , 2014 .

[90]  C. H. Bartholomew,et al.  Hydrogenation of CO2 on group VIII metals: I. Specific activity of NiSiO2 , 1981 .

[91]  Ning Zhang,et al.  Self-doped SrTiO3−δ photocatalyst with enhanced activity for artificial photosynthesis under visible light , 2011 .

[92]  Jinhua Ye,et al.  Targeting Activation of CO2 and H2 over Ru‐Loaded Ultrathin Layered Double Hydroxides to Achieve Efficient Photothermal CO2 Methanation in Flow‐Type System , 2017 .

[93]  S. Qiao,et al.  Recent Advances in Inorganic Heterogeneous Electrocatalysts for Reduction of Carbon Dioxide , 2016, Advanced materials.

[94]  Ung Gi Hong,et al.  Hydrogenation of carbon monoxide to methane over mesoporous nickel-M-alumina (M = Fe, Ni, Co, Ce, and La) xerogel catalysts , 2012 .

[95]  H. Xin,et al.  Singular characteristics and unique chemical bond activation mechanisms of photocatalytic reactions on plasmonic nanostructures. , 2012, Nature materials.

[96]  Matthew W. Kanan,et al.  Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper , 2014, Nature.

[97]  M. Dry,et al.  The Fischer–Tropsch process: 1950–2000 , 2002 .

[98]  Hailong Liu,et al.  Highly Selective Conversion of Carbon Dioxide to Lower Olefins , 2017 .

[99]  K. Trenberth,et al.  Modern Global Climate Change , 2003, Science.

[100]  Chunguang Chen,et al.  Electrochemical Reduction of Carbon Dioxide to Ethane Using Nanostructured Cu2O-Derived Copper Catalyst and Palladium(II) Chloride , 2015 .

[101]  X. Bao,et al.  Highly selective palladium-copper bimetallic electrocatalysts for the electrochemical reduction of CO2 to CO , 2016 .

[102]  M. Jaroniec,et al.  A noble metal-free reduced graphene oxide–CdS nanorod composite for the enhanced visible-light photocatalytic reduction of CO2 to solar fuel , 2014 .

[103]  Tao Zhang,et al.  Crystal phase effects on the structure and performance of ruthenium nanoparticles for CO2 hydrogenation , 2014 .

[104]  Jonas Baltrusaitis,et al.  Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes , 2013 .

[105]  C. Grimes,et al.  Generation of fuel from CO2 saturated liquids using a p-Si nanowire ‖ n-TiO2 nanotube array photoelectrochemical cell. , 2012, Nanoscale.

[106]  Frank L. Kester,et al.  Carbon Dioxide Methanation on a Ruthenium Catalyst , 1974 .

[107]  Akira Murata,et al.  "Deactivation of copper electrode" in electrochemical reduction of CO2 , 2005 .

[108]  J. Gaube,et al.  Studies on product distributions of iron and cobalt catalyzed Fischer–Tropsch synthesis , 1999 .

[109]  C. Oloman,et al.  Development of a continuous reactor for the electro-reduction of carbon dioxide to formate – Part 1: Process variables , 2006 .

[110]  Wenhui Li,et al.  CO2 hydrogenation to hydrocarbons over alumina-supported iron catalyst: Effect of support pore size , 2017 .

[111]  T. Tatsumi,et al.  Photocatalytic reduction of CO2 with H2O on Ti-MCM-41 and Ti-MCM-48 mesoporous zeolite catalysts , 1998 .

[112]  Judith Gurney BP Statistical Review of World Energy , 1985 .

[113]  D. Mattia,et al.  Effect of nanostructured ceria as support for the iron catalysed hydrogenation of CO2 into hydrocarbons. , 2016, Physical chemistry chemical physics : PCCP.

[114]  G. Mul,et al.  Electrochemical CO2 reduction on Cu2O-derived copper nanoparticles: controlling the catalytic selectivity of hydrocarbons. , 2014, Physical chemistry chemical physics : PCCP.

[115]  Hongyi Zhang,et al.  Controlled assembly of Cu nanoparticles on pyridinic-N rich graphene for electrochemical reduction of CO2 to ethylene , 2016 .

[116]  Y. Hwang,et al.  Mixed Copper States in Anodized Cu Electrocatalyst for Stable and Selective Ethylene Production from CO2 Reduction. , 2018, Journal of the American Chemical Society.

[117]  Naomi J. Halas,et al.  Photodetection with Active Optical Antennas , 2011, Science.

[118]  Sung Jae Kim,et al.  Morphology-Directed Selective Production of Ethylene or Ethane from CO2 on a Cu Mesopore Electrode. , 2017, Angewandte Chemie.

[119]  Sonja A. Francis,et al.  Nickel–Gallium-Catalyzed Electrochemical Reduction of CO2 to Highly Reduced Products at Low Overpotentials , 2016 .

[120]  M. Koper,et al.  The influence of pH on the reduction of CO and CO2 to hydrocarbons on copper electrodes , 2014 .

[121]  V. Batista,et al.  Electrochemical CO2 Reduction to Hydrocarbons on a Heterogeneous Molecular Cu Catalyst in Aqueous Solution. , 2016, Journal of the American Chemical Society.

[122]  Jinhua Ye,et al.  Photocatalytic CO2 conversion over alkali modified TiO2 without loading noble metal cocatalyst. , 2014, Chemical communications.

[123]  G. Somorjai,et al.  Combining in situ NEXAFS spectroscopy and CO₂ methanation kinetics to study Pt and Co nanoparticle catalysts reveals key insights into the role of platinum in promoted cobalt catalysis. , 2014, Journal of the American Chemical Society.

[124]  Yuhan Sun,et al.  Direct conversion of CO2 into liquid fuels with high selectivity over a bifunctional catalyst , 2017, Nature Chemistry.

[125]  M. Baerns,et al.  Catalyst Development for CO2 Hydrogenation to Fuels , 2013 .

[126]  P. Serp,et al.  Catalysis in Carbon Nanotubes , 2010 .

[127]  Ming Ma,et al.  Controllable Hydrocarbon Formation from the Electrochemical Reduction of CO2 over Cu Nanowire Arrays. , 2016, Angewandte Chemie.

[128]  G. Mul,et al.  Manipulating the Hydrocarbon Selectivity of Copper Nanoparticles in CO2 Electroreduction by Process Conditions , 2015 .

[129]  C. Apesteguía,et al.  Kinetic study of the reverse water-gas shift reaction over CuO/ZnO/Al2O3 catalysts , 1997 .

[130]  Michael B. Ross,et al.  Structure-Sensitive CO2 Electroreduction to Hydrocarbons on Ultrathin 5-fold Twinned Copper Nanowires. , 2017, Nano letters.

[131]  R. Margolis,et al.  Terawatt-scale photovoltaics: Trajectories and challenges , 2017, Science.

[132]  Anders Nilsson,et al.  High selectivity for ethylene from carbon dioxide reduction over copper nanocube electrocatalysts. , 2015, Angewandte Chemie.

[133]  Andreas Züttel,et al.  Sorption enhanced CO2 methanation. , 2013, Physical chemistry chemical physics : PCCP.

[134]  Pratim Biswas,et al.  Size and structure matter: enhanced CO2 photoreduction efficiency by size-resolved ultrafine Pt nanoparticles on TiO2 single crystals. , 2012, Journal of the American Chemical Society.

[135]  Michael J. Janik,et al.  Facet Dependence of CO2 Reduction Paths on Cu Electrodes , 2016 .

[136]  Y. Hori,et al.  Product Selectivity Affected by Cationic Species in Electrochemical Reduction of CO2 and CO at a Cu Electrode , 1991 .

[137]  P. Kenis,et al.  Prospects of CO2 Utilization via Direct Heterogeneous Electrochemical Reduction , 2010 .

[138]  Cheng Wang,et al.  Confinement of Ultrasmall Cu/ZnOx Nanoparticles in Metal-Organic Frameworks for Selective Methanol Synthesis from Catalytic Hydrogenation of CO2. , 2017, Journal of the American Chemical Society.

[139]  John-Paul Jones,et al.  Recycling of carbon dioxide to methanol and derived products - closing the loop. , 2014, Chemical Society reviews.

[140]  Michael J. Janik,et al.  Reaction mechanisms of CO2 electrochemical reduction on Cu(111) determined with density functional theory , 2014 .

[141]  Z. Zou,et al.  Polymeric g-C3N4 Coupled with NaNbO3 Nanowires toward Enhanced Photocatalytic Reduction of CO2 into Renewable Fuel , 2014 .

[142]  Dong Ha Kim,et al.  Enhancing Solar Light-Driven Photocatalytic Activity of Mesoporous Carbon–TiO2 Hybrid Films via Upconversion Coupling , 2018 .

[143]  L. Curtiss,et al.  Computational screening of dopants for photocatalytic two-electron reduction of CO2 on anatase (101) surfaces , 2012 .

[144]  Claus H. Christensen,et al.  CO methanation over supported bimetallic Ni–Fe catalysts: From computational studies towards catalyst optimization , 2007 .

[145]  S. Ishimaru,et al.  Pulsed Electroreduction of CO 2 on Cu‐Ag Alloy Electrodes , 2000 .

[146]  M. N. Hossain,et al.  Unique copper and reduced graphene oxide nanocomposite toward the efficient electrochemical reduction of carbon dioxide , 2017, Scientific Reports.

[147]  Jianping Xiao,et al.  CO2 reduction at low overpotential on Cu electrodes in the presence of impurities at the subsurface , 2014 .

[148]  M. Vannice,et al.  Supported palladium catalysts for methanation , 1979 .

[149]  A. Sammells,et al.  Evidence for Formaldehyde, Formic Acid, and Acetaldehyde as Possible Intermediates during Electrochemical Carbon Dioxide Reduction at Copper , 1989 .

[150]  Y. Hori,et al.  Electroreduction of carbon monoxide to methane and ethylene at a copper electrode in aqueous solutions at ambient temperature and pressure , 1987 .

[151]  M. Graetzel,et al.  A fourier transform infrared spectroscopic study of C02 methanation on supported ruthenium , 1991 .

[152]  Zhuo Cheng,et al.  Carbon dioxide activation and dissociation on ceria (110): a density functional theory study. , 2012, The Journal of chemical physics.

[153]  Xu-xu Zheng,et al.  Methanation of carbon dioxide over Ni/CeO2 catalysts: Effects of support CeO2 structure , 2017 .

[154]  Y. Hori,et al.  Electrochemical reduction of carbon dioxides to carbon monoxide at a gold electrode in aqueous potassium hydrogen carbonate , 1987 .

[155]  B. Davis,et al.  Influence of Gas Feed Composition and Pressure on the Catalytic Conversion of CO2 to Hydrocarbons Using a Traditional Cobalt-Based Fischer−Tropsch Catalyst , 2009 .

[156]  Mark C Hersam,et al.  Minimizing graphene defects enhances titania nanocomposite-based photocatalytic reduction of CO2 for improved solar fuel production. , 2011, Nano letters.

[157]  Nina Fechler,et al.  Chemically heterogeneous nitrogen sites of various reactivity in porous carbons provide high stability of CO2 electroreduction catalysts , 2018, Applied Catalysis B: Environmental.

[158]  D. Sokaras,et al.  Structure, Redox Chemistry, and Interfacial Alloy Formation in Monolayer and Multilayer Cu/Au(111) Model Catalysts for CO2 Electroreduction , 2014 .

[159]  Xun Lu,et al.  The effect of electrolyte composition on the electroreduction of CO2 to CO on Ag based gas diffusion electrodes. , 2016, Physical chemistry chemical physics : PCCP.

[160]  Yu‐Chuan Lin,et al.  Graphene oxide as a promising photocatalyst for CO2 to methanol conversion. , 2013, Nanoscale.

[161]  K. W. Frese,et al.  Electrochemical Reduction of CO 2 at Intentionally Oxidized Copper Electrodes , 1991 .

[162]  N. Russo,et al.  Syngas production from electrochemical reduction of CO2: current status and prospective implementation , 2017 .

[163]  Kiyoshi Otsuka,et al.  Complete removal of carbon monoxide in hydrogen-rich gas stream through methanation over supported metal catalysts , 2004 .

[164]  P. Strasser,et al.  Controlling Catalytic Selectivities during CO2 Electroreduction on Thin Cu Metal Overlayers , 2013 .

[165]  N. G. Gallegos,et al.  Selectivity to Olefins of Fe/SiO2–MgO Catalysts in the Fischer–Tropsch Reaction , 1996 .

[166]  P. Ruiz,et al.  CO2 hydrogenation at low temperature over Rh/gamma-Al2O3 catalysts: effect of the metal particle size on catalytic performances and reaction mechanism , 2012 .

[167]  Etsuko Fujita,et al.  CO2 Hydrogenation to Formate and Methanol as an Alternative to Photo- and Electrochemical CO2 Reduction. , 2015, Chemical reviews.

[168]  Sang-Eon Park,et al.  Photocatalytic reduction of CO2 with H2O on titanium oxides anchored within zeolites , 1998 .

[169]  Hans Schulz,et al.  Comparative study of Fischer–Tropsch synthesis with H2/CO and H2/CO2 syngas using Fe- and Co-based catalysts , 1999 .

[170]  Chunhua Lu,et al.  Different upconversion properties of β-NaYF4:Yb3+,Tm3+/Er3+ in affecting the near-infrared-driven photocatalytic activity of high-reactive TiO2. , 2014, ACS applied materials & interfaces.

[171]  Y. Surendranath,et al.  Impurity Ion Complexation Enhances Carbon Dioxide Reduction Catalysis , 2015 .

[172]  Z. Zou,et al.  Efficient conversion of CO2 and H2O into hydrocarbon fuel over ZnAl2O(4)-modified mesoporous ZnGaNO under visible light irradiation. , 2012, Chemical communications.

[173]  Qinghong Zhang,et al.  Photocatalytic reduction of CO2 with H2O: significant enhancement of the activity of Pt-TiO2 in CH4 formation by addition of MgO. , 2013, Chemical communications.

[174]  Ping He,et al.  Li-CO2 Electrochemistry: A New Strategy for CO2 Fixation and Energy Storage , 2017 .

[175]  Tierui Zhang,et al.  Defect‐Rich Ultrathin ZnAl‐Layered Double Hydroxide Nanosheets for Efficient Photoreduction of CO2 to CO with Water , 2015, Advanced materials.

[176]  Rajamani Krishna,et al.  Fundamentals and selection of advanced Fischer-Tropsch reactors , 1999 .

[177]  Richard Chahine,et al.  Challenges for renewable hydrogen production from biomass , 2010 .

[178]  Yong Zhou,et al.  A room-temperature reactive-template route to mesoporous ZnGa2O4 with improved photocatalytic activity in reduction of CO2. , 2010, Angewandte Chemie.

[179]  Alán Aspuru-Guzik,et al.  Renewables need a grand-challenge strategy , 2016, Nature.

[180]  T. Andreu,et al.  Engineering the TiO2 outermost layers using magnesium for carbon dioxide photoreduction , 2014 .

[181]  P. Strasser,et al.  Tuning the Catalytic Activity and Selectivity of Cu for CO2 Electroreduction in the Presence of Halides , 2016 .

[182]  G. Centi,et al.  Catalysis for CO2 conversion: a key technology for rapid introduction of renewable energy in the value chain of chemical industries , 2013 .

[183]  C. Grimes,et al.  Photocatalytic conversion of CO2 to hydrocarbon fuel using carbon and nitrogen co-doped sodium titanate nanotubes , 2015 .

[184]  Wenguang Tu,et al.  Robust Hollow Spheres Consisting of Alternating Titania Nanosheets and Graphene Nanosheets with High Photocatalytic Activity for CO2 Conversion into Renewable Fuels , 2012 .

[185]  Huanling Song,et al.  Methanation of Carbon Dioxide over a Highly Dispersed Ni/La2O3 Catalyst , 2010 .

[186]  Tohru S. Suzuki,et al.  Electrochemical Reduction of CO2 to Methane at the Cu Electrode in Methanol with Sodium Supporting Salts and Its Comparison with Other Alkaline Salts , 2006 .

[187]  S. Kelley,et al.  High-Density Nanosharp Microstructures Enable Efficient CO2 Electroreduction. , 2016, Nano letters.

[188]  A. Govorov,et al.  Harvesting Lost Photons: Plasmon and Upconversion Enhanced Broadband Photocatalytic Activity in Core@Shell Microspheres Based on Lanthanide‐Doped NaYF4, TiO2, and Au , 2015 .

[189]  Photocatalytic CO2 reduction by TiO2 and related titanium containing solids , 2012 .

[190]  Chang-jun Liu,et al.  The promotion effect of CeO2 on CO2 adsorption and hydrogenation over Ga2O3 , 2012 .

[191]  H. Schulz,et al.  Specific inhibition as the kinetic principle of the Fischer-Tropsch synthesis , 1995 .

[192]  Qiang Xu,et al.  Syntheses of Isobutane and Branched Higher Hydrocarbons from Carbon Dioxide and Hydrogen over Composite Catalysts , 1999 .

[193]  Sang-Eon Park,et al.  Photoreduction of Carbondioxide on Surface Functionalized Nanoporous Catalysts , 2005 .

[194]  A. Asthagiri,et al.  Surface phases of Cu2O(111) under CO2 electrochemical reduction conditions , 2014 .

[195]  Hanqing Yu,et al.  Efficient electrochemical CO2 reduction on a unique chrysanthemum-like Cu nanoflower electrode and direct observation of carbon deposite , 2014 .

[196]  Jiaguo Yu,et al.  A Hierarchical Z-Scheme CdS-WO3 Photocatalyst with Enhanced CO2 Reduction Activity. , 2015, Small.

[197]  Prathamesh Pavaskar,et al.  Photocatalytic Conversion of CO2 to Hydrocarbon Fuels via Plasmon-Enhanced Absorption and Metallic Interband Transitions , 2011 .

[198]  Jin-Seung Jung,et al.  Catalytic Behavior of Nickel Particles Embedded in Three-dimensional Mesoporous SBA15 , 2007 .

[199]  J. Lahtinen,et al.  C, CO and CO2 hydrogenation on cobalt foil model catalysts: evidence for the need of CoO reduction , 1994 .

[200]  Jinhua Ye,et al.  The Effects of Crystal Structure and Electronic Structure on Photocatalytic H2 Evolution and CO2 Reduction over Two Phases of Perovskite-Structured NaNbO3 , 2012 .

[201]  K. Shankar,et al.  Photocatalytic conversion of diluted CO2 into light hydrocarbons using periodically modulated multiwalled nanotube arrays. , 2012, Angewandte Chemie.

[202]  Yuichi Ichihashi,et al.  Photocatalytic reduction of CO2 with H2O on various titanium oxide catalysts , 1995 .

[203]  Anne C. Co,et al.  A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper , 2006 .

[204]  Shi Yan,et al.  Promotion effect of Fe–Cu catalyst for the hydrogenation of CO2 and application to slurry reactor , 2000 .

[205]  Woo-Cheol Shin,et al.  Catalyst deactivation during hydrogenation of carbon dioxide: Effect of catalyst position in the packed bed reactor , 2009 .

[206]  H. García,et al.  Gold-copper nanoalloys supported on TiO2 as photocatalysts for CO2 reduction by water. , 2014, Journal of the American Chemical Society.

[207]  A. Villa,et al.  CO2 photoreduction at high pressure to both gas and liquid products over titanium dioxide , 2017 .

[208]  Junseok Lee,et al.  Electron-induced dissociation of CO2 on TiO2(110). , 2011, Journal of the American Chemical Society.

[209]  Myoung-Jae Choi,et al.  Performance of catalytic reactors for the hydrogenation of CO2 to hydrocarbons , 2006 .

[210]  W. Chu,et al.  Methanation of carbon dioxide on Ni/ZrO2-Al2O3 catalysts: Effects of ZrO2 promoter and preparation method of novel ZrO2-Al2O3 carrier , 2011 .

[211]  H. Kang,et al.  A versatile photoanode-driven photoelectrochemical system for conversion of CO2 to fuels with high faradaic efficiencies at low bias potentials , 2014 .

[212]  J. Gole,et al.  Enhanced Nitrogen Doping in TiO2 Nanoparticles , 2003 .

[213]  O. Ishitani,et al.  Photochemical reduction of CO₂ using TiO₂: effects of organic adsorbates on TiO₂ and deposition of Pd onto TiO₂. , 2011, ACS applied materials & interfaces.

[214]  Lucie Obalová,et al.  Effect of TiO2 particle size on the photocatalytic reduction of CO2 , 2009 .

[215]  Xiaoqiang An,et al.  Graphene-based photocatalytic composites , 2011 .

[216]  A. Paul Alivisatos,et al.  Enhanced electrochemical methanation of carbon dioxide with a dispersible nanoscale copper catalyst. , 2014, Journal of the American Chemical Society.

[217]  M. Grätzel,et al.  Methanation and photo-methanation of carbon dioxide at room temperature and atmospheric pressure , 1987, Nature.

[218]  A. Oszkó,et al.  Effect of H2S on the hydrogenation of carbon dioxide over supported Rh catalysts , 2007 .

[219]  J. Kašpar,et al.  A Temperature-Programmed and Transient Kinetic Study of CO2Activation and Methanation over CeO2Supported Noble Metals , 1997 .

[220]  Jinlong Yang,et al.  Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel , 2016, Nature.

[221]  Ke R. Yang,et al.  Active sites of copper-complex catalytic materials for electrochemical carbon dioxide reduction , 2018, Nature Communications.

[222]  Ying Yu,et al.  Preparation of multi-walled carbon nanotube supported TiO2 and its photocatalytic activity in the reduction of CO2 with H2O , 2007 .

[223]  C. S. Budi,et al.  Size-tunable Ni nanoparticles supported on surface-modified, cage-type mesoporous silica as highly active catalysts for CO2 hydrogenation , 2017 .

[224]  Feng Jiao,et al.  A selective and efficient electrocatalyst for carbon dioxide reduction , 2014, Nature Communications.

[225]  F. Solymosi,et al.  Methanation of CO2 on supported rhodium catalyst , 1981 .

[226]  Yun Huang,et al.  Electrochemical Reduction of CO2 Using Copper Single-Crystal Surfaces: Effects of CO* Coverage on the Selective Formation of Ethylene , 2017 .

[227]  Wengao Zhao,et al.  Thermodynamic controlled synthesis of intermetallic Au3Cu alloy nanocrystals from Cu microparticles , 2014 .

[228]  Lianjun Liu,et al.  Photocatalytic CO2 Reduction with H2O on TiO2 Nanocrystals: Comparison of Anatase, Rutile, and Brookite Polymorphs and Exploration of Surface Chemistry , 2012 .

[229]  Xin Guo,et al.  Composition dependent activity of Cu-Pt nanocrystals for electrochemical reduction of CO2. , 2015, Chemical communications.

[230]  P. Strasser,et al.  Catalyst Particle Density Controls Hydrocarbon Product Selectivity in CO2 Electroreduction on CuOx. , 2017, ChemSusChem.

[231]  William J. Durand,et al.  The importance of surface morphology in controlling the selectivity of polycrystalline copper for CO2 electroreduction. , 2012, Physical chemistry chemical physics : PCCP.

[232]  Tsunehiro Tanaka,et al.  PHOTOREDUCTION OF CARBON DIOXIDE WITH HYDROGEN OVER ZRO2 , 1997 .

[233]  Lucie Obalová,et al.  Effect of silver doping on the TiO2 for photocatalytic reduction of CO2 , 2010 .

[234]  Yong Zhou,et al.  Zn2GeO4 crystal splitting toward sheaf-like, hyperbranched nanostructures and photocatalytic reduction of CO2 into CH4 under visible light after nitridation , 2012 .

[235]  Xinchen Wang,et al.  Photochemical Reduction of CO2 by Graphitic Carbon Nitride Polymers , 2014 .

[236]  Avelino Corma,et al.  Complete photocatalytic reduction of CO₂ to methane by H₂ under solar light irradiation. , 2014, Journal of the American Chemical Society.

[237]  Ji Man Kim,et al.  Photocatalytic CO2 conversion on highly ordered mesoporous materials: Comparisons of metal oxides and compound semiconductors , 2018 .

[238]  Eric W. McFarland,et al.  A highly dispersed Pd-Mg/SiO2 catalyst active for methanation of CO2 , 2009 .

[239]  F. Williams,et al.  K and Mn doped iron-based CO2 hydrogenation catalysts: Detection of KAlH4 as part of the catalyst's active phase , 2010 .

[240]  Javier Pérez-Ramírez,et al.  New and revisited insights into the promotion of methanol synthesis catalysts by CO2 , 2013 .

[241]  Li Lu,et al.  Cobalt Catalysts Decorated with Platinum Atoms Supported on Barium Zirconate Provide Enhanced Activity and Selectivity for CO2 Methanation , 2016 .

[242]  Martin Moskovits,et al.  An autonomous photosynthetic device in which all charge carriers derive from surface plasmons. , 2013, Nature nanotechnology.

[243]  Jingguang G. Chen,et al.  Catalytic reduction of CO2 by H2 for synthesis of CO, methanol and hydrocarbons: challenges and opportunities , 2016 .

[244]  A. Trovarelli,et al.  Carbon dioxide hydrogenation on rhodium supported on transition metal oxides , 1990 .

[245]  Kamal Kishore,et al.  Photo-catalytic reduction of carbon dioxide to methane using TiO2 as suspension in water , 2004 .

[246]  Shinichi Ichikawa,et al.  Hydrogen production from water and conversion of carbon dioxide to useful chemicals by room temperature photoelectrocatalysis , 1996 .

[247]  Masahiro Watanabe,et al.  Design of Alloy Electrocatalysts for CO 2 Reduction III . The Selective and Reversible Reduction of on Cu Alloy Electrodes , 1991 .

[248]  J. Kang,et al.  Highly porous gallium oxide with a high CO2 affinity for the photocatalytic conversion of carbon dioxide into methane , 2012 .

[249]  P. Panagiotopoulou Hydrogenation of CO2 over supported noble metal catalysts , 2017 .

[250]  H. Lasa,et al.  Experimental evaluation of photon absorption in an aqueous TiO2 slurry reactor , 2002 .

[251]  Andrew D. Unruh,et al.  Membrane Application in Fischer−Tropsch Synthesis to Enhance CO2 Hydrogenation , 2005 .

[252]  S. Neubauer,et al.  Selective Electroreduction of CO2 toward Ethylene on Nano Dendritic Copper Catalysts at High Current Density , 2017 .

[253]  Tsunehiro Tanaka,et al.  Which is an Intermediate Species for Photocatalytic Conversion of CO2 by H2O as the Electron Donor: CO2 Molecule, Carbonic Acid, Bicarbonate, or Carbonate Ions? , 2017 .

[254]  A. Bard,et al.  Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting. , 2006, Nano letters.

[255]  Dunfeng Gao,et al.  Plasma-Activated Copper Nanocube Catalysts for Efficient Carbon Dioxide Electroreduction to Hydrocarbons and Alcohols. , 2017, ACS nano.

[256]  Craig A. Grimes,et al.  High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels. , 2009, Nano letters.

[257]  Leilei Xu,et al.  Alkaline-promoted Ni based ordered mesoporous catalysts with enhanced low-temperature catalytic activity toward CO2 methanation , 2017 .

[258]  Falong Jia,et al.  Enhanced selectivity for the electrochemical reduction of CO2 to alcohols in aqueous solution with nanostructured Cu–Au alloy as catalyst , 2014 .

[259]  J. Klemeš,et al.  Hydrogen production: Perspectives, separation with special emphasis on kinetics of WGS reaction: A state-of-the-art review , 2017 .

[260]  P. Ajayan,et al.  A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates , 2016, Nature Communications.

[261]  Yong Zhou,et al.  High-yield synthesis of ultralong and ultrathin Zn2GeO4 nanoribbons toward improved photocatalytic reduction of CO2 into renewable hydrocarbon fuel. , 2010, Journal of the American Chemical Society.

[262]  Jacek K. Stolarczyk,et al.  Photocatalytic reduction of CO2 on TiO2 and other semiconductors. , 2013, Angewandte Chemie.

[263]  Michele Aresta,et al.  Catalysis for the valorization of exhaust carbon: from CO2 to chemicals, materials, and fuels. technological use of CO2. , 2014, Chemical reviews.

[264]  E. Cattaneo,et al.  Reduction of carbon dioxide to methane and ethene—an on-line MS study with rotating electrodes , 1990 .

[265]  Y. Hori,et al.  Selective Formation of C2 Compounds from Electrochemical Reduction of CO2 at a Series of Copper Single Crystal Electrodes , 2002 .

[266]  Dong Ha Kim,et al.  Soft-template-carbonization route to highly textured mesoporous carbon-TiO₂ inverse opals for efficient photocatalytic and photoelectrochemical applications. , 2014, Physical Chemistry, Chemical Physics - PCCP.

[267]  Huabo Zhao,et al.  Fe5C2 nanoparticles: a facile bromide-induced synthesis and as an active phase for Fischer-Tropsch synthesis. , 2012, Journal of the American Chemical Society.

[268]  V. Dubois,et al.  CO2 methanation on Ru/TiO2 catalysts: on the effect of mixing anatase and rutile TiO2 supports , 2018 .

[269]  Arno de Klerk,et al.  Fischer–Tropsch fuels refinery design , 2011 .

[270]  J. Ager,et al.  Tailoring Copper Nanocrystals towards C2 Products in Electrochemical CO2 Reduction. , 2016, Angewandte Chemie.

[271]  Shi Yan,et al.  Slurry-phase CO2 hydrogenation to hydrocarbons over a precipitated Fe-Cu-Al/K catalyst: Investigation of reaction conditions , 1999 .

[272]  Norbert Kruse,et al.  Size-controlled model Co nanoparticle catalysts for CO₂ hydrogenation: synthesis, characterization, and catalytic reactions. , 2012, Nano letters.

[273]  X. Verykios,et al.  Selective methanation of CO over supported noble metal catalysts: Effects of the nature of the metallic phase on catalytic performance , 2008 .

[274]  Lianjun Liu,et al.  Bicrystalline TiO2 with controllable anatase–brookite phase content for enhanced CO2 photoreduction to fuels , 2013 .

[275]  Haifeng Lv,et al.  Monodisperse Au nanoparticles for selective electrocatalytic reduction of CO2 to CO. , 2013, Journal of the American Chemical Society.

[276]  Hui‐Ming Cheng,et al.  Crystal facet-dependent photocatalytic oxidation and reduction reactivity of monoclinic WO3 for solar energy conversion , 2012 .

[277]  J. Fierro,et al.  Hydrogenation of carbon oxides over promoted Fe-Mn catalysts prepared by the microemulsion methodology , 2006 .

[278]  Wenguang Tu,et al.  Au@TiO₂ yolk-shell hollow spheres for plasmon-induced photocatalytic reduction of CO₂ to solar fuel via a local electromagnetic field. , 2015, Nanoscale.

[279]  C. H. Bartholomew,et al.  Hydrogenation of CO2 on group VIII metals: IV. Specific activities and selectivities of silica-supported Co, Fe, and Ru , 1984 .

[280]  E. Iglesia,et al.  Effects of Zn, Cu, and K Promoters on the Structure and on the Reduction, Carburization, and Catalytic Behavior of Iron-Based Fischer–Tropsch Synthesis Catalysts , 2001 .

[281]  H. Habazaki,et al.  Effect of tetragonal ZrO2 on the catalytic activity of Ni/ZrO2 catalyst prepared from amorphous Ni–Zr alloys , 2006 .

[282]  Alexis T Bell,et al.  Differential Electrochemical Mass Spectrometer Cell Design for Online Quantification of Products Produced during Electrochemical Reduction of CO₂. , 2015, Analytical chemistry.

[283]  Paul J. A. Kenis,et al.  One-step electrosynthesis of ethylene and ethanol from CO2 in an alkaline electrolyzer , 2016 .

[284]  T. Tatsumi,et al.  PHOTOCATALYTIC REDUCTION OF CO2 WITH H2O ON TI-MCM-41 AND TI-MCM-48 MESOPOROUS ZEOLITES AT 328 K , 1997 .

[285]  M. Jaroniec,et al.  Enhanced photocatalytic H₂-production activity of graphene-modified titania nanosheets. , 2011, Nanoscale.

[286]  M. Koper,et al.  Electrochemical reduction of carbon dioxide on copper electrodes , 2017 .

[287]  D. Mattia,et al.  Fe@CNT-monoliths for the conversion of carbon dioxide to hydrocarbons: structural characterisation and Fischer–Tropsch reactivity investigations , 2014 .

[288]  J. Nørskov,et al.  Opportunities and challenges in the electrocatalysis of CO2 and CO reduction using bifunctional surfaces: A theoretical and experimental study of Au–Cd alloys , 2016 .

[289]  Jun Jiang,et al.  Isolation of Cu Atoms in Pd Lattice: Forming Highly Selective Sites for Photocatalytic Conversion of CO2 to CH4. , 2017, Journal of the American Chemical Society.

[290]  S. C. Fung,et al.  Strong metal-support interactions. Group 8 noble metals supported on titanium dioxide , 1978 .

[291]  P. Ajayan,et al.  How Nitrogen-Doped Graphene Quantum Dots Catalyze Electroreduction of CO2 to Hydrocarbons and Oxygenates , 2017 .

[292]  E. Iglesia,et al.  Iron catalyzed CO2 hydrogenation to liquid hydrocarbons , 1998 .

[293]  Maria Sudiro,et al.  Improving Process Performances in Coal Gasification for Power and Synfuel Production , 2008 .

[294]  L. Pettersson,et al.  Stability and Effects of Subsurface Oxygen in Oxide-Derived Cu Catalyst for CO2 Reduction , 2017 .

[295]  G. Wedler,et al.  Catalytic Reactions of Mixtures of Carbon Dioxide, Ethene, and Hydrogen on Cobalt Surfaces , 1999 .

[296]  Jinhua Ye,et al.  Mesoporous zinc germanium oxynitride for CO2 photoreduction under visible light. , 2012, Chemical communications.

[297]  Junying Zhang,et al.  Selective photocatalytic reduction of CO2 into CH4 over Pt-Cu2O TiO2 nanocrystals: The interaction between Pt and Cu2O cocatalysts , 2017 .

[298]  Jinhua Ye,et al.  High-active anatase TiO₂ nanosheets exposed with 95% {100} facets toward efficient H₂ evolution and CO₂ photoreduction. , 2013, ACS applied materials & interfaces.

[299]  Yuhan Sun,et al.  Cobalt carbide nanoprisms for direct production of lower olefins from syngas , 2016, Nature.

[300]  Aleksandar R. Zeradjanin,et al.  Screening of material libraries for electrochemical CO2 reduction catalysts - Improving selectivity of Cu by mixing with Co , 2016 .

[301]  Binglian Liang,et al.  Catalytic carbon dioxide hydrogenation to methane: A review of recent studies , 2016 .

[302]  A. Trovarelli,et al.  Metal-Support Interactions in Rh/CeO2, Rh/TiO2, and Rh/Nb2O5 Catalysts as Inferred from CO2 Methanation Activity , 1995 .

[303]  K. Shankar,et al.  Anodic Cu₂S and CuS nanorod and nanowall arrays: preparation, properties and application in CO₂ photoreduction. , 2014, Nanoscale.

[304]  J. Gregoire,et al.  The evolution of the polycrystalline copper surface, first to Cu(111) and then to Cu(100), at a fixed CO₂RR potential: a study by operando EC-STM. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[305]  G. Guan,et al.  Reduction of carbon dioxide with water under concentrated sunlight using photocatalyst combined with Fe-based catalyst , 2003 .

[306]  J. Benziger,et al.  Enhanced Methanol to Olefin Catalysis by Physical Mixtures of SAPO-34 Molecular Sieve and MgO , 2017 .

[307]  Wenhui Li,et al.  Low Temperature CO2 Methanation: ZIF-67-Derived Co-Based Porous Carbon Catalysts with Controlled Crystal Morphology and Size , 2017 .

[308]  Tao Zhang,et al.  Atomically dispersed Ni(i) as the active site for electrochemical CO2 reduction , 2018 .

[309]  M. Herskowitz,et al.  Effect of potassium on the active phases of Fe catalysts for carbon dioxide conversion to liquid fuels through hydrogenation , 2017 .

[310]  Pengfei Wang,et al.  Conversion of Methanol to Olefins over H-ZSM-5 Zeolite: Reaction Pathway Is Related to the Framework Aluminum Siting , 2016 .

[311]  Tandem Catalysis for CO2 Hydrogenation to C2-C4 Hydrocarbons. , 2017, Nano letters.

[312]  A. Kudo,et al.  Heterogeneous photocatalyst materials for water splitting. , 2009, Chemical Society reviews.

[313]  Danielle A. Salvatore,et al.  Electrolytic CO2 Reduction in a Flow Cell. , 2018, Accounts of chemical research.

[314]  W. Cui,et al.  The promotions of MnO and K2O to Fe/silicalite-2 catalyst for the production of light alkenes from CO2 hydrogenation , 1998 .

[315]  J. Falconer,et al.  Adsorption and methanation of carbon dioxide on a nickel/silica catalyst , 1980 .

[316]  R. Schlögl,et al.  Performance improvement of nanocatalysts by promoter-induced defects in the support material: methanol synthesis over Cu/ZnO:Al. , 2013, Journal of the American Chemical Society.

[317]  L. Pfefferle,et al.  Methanation of carbon dioxide on Ni-incorporated MCM-41 catalysts: The influence of catalyst pretreatment and study of steady-state reaction , 2007 .

[318]  T. Abe,et al.  CO2 methanation property of Ru nanoparticle-loaded TiO2 prepared by a polygonal barrel-sputtering method , 2009 .

[319]  Chunshan Song,et al.  Bimetallic Fe-Co catalysts for CO2 hydrogenation to higher hydrocarbons , 2013 .

[320]  Yadong Li,et al.  Design of Single-Atom Co-N5 Catalytic Site: A Robust Electrocatalyst for CO2 Reduction with Nearly 100% CO Selectivity and Remarkable Stability. , 2018, Journal of the American Chemical Society.

[321]  N. Sasirekha,et al.  Photocatalytic performance of Ru doped anatase mounted on silica for reduction of carbon dioxide , 2006 .

[322]  Seung Yo Choi,et al.  Stand-alone photoconversion of carbon dioxide on copper oxide wire arrays powered by tungsten trioxide/dye-sensitized solar cell dual absorbers , 2016 .

[323]  Yong Zhou,et al.  An Ion‐Exchange Phase Transformation to ZnGa2O4 Nanocube Towards Efficient Solar Fuel Synthesis , 2013 .

[324]  Joseph H. Montoya,et al.  Theoretical Insights into a CO Dimerization Mechanism in CO2 Electroreduction. , 2015, The journal of physical chemistry letters.

[325]  P. Kenis,et al.  Ionic Liquid–Mediated Selective Conversion of CO2 to CO at Low Overpotentials , 2011, Science.

[326]  Masahiro Watanabe,et al.  Design of alloy electrocatalysts for CO2 reduction: Improved energy efficiency, selectivity, and reaction rate for the CO2 electroreduction on Cu alloy electrodes , 1991 .

[327]  Jiancheng Zhou,et al.  Enhanced Photocatalytic Performance toward CO2 Hydrogenation over Nanosized TiO2-Loaded Pd under UV Irradiation , 2017 .

[328]  Devin T. Whipple Microfluidic reactor for the electrochemical reduction of carbon dioxide , 2010 .

[329]  J. Bitter,et al.  Supported Iron Nanoparticles as Catalysts for Sustainable Production of Lower Olefins , 2012, Science.

[330]  Wei Zhao,et al.  Efficient Conversion of CO2 to Methane Photocatalyzed by Conductive Black Titania , 2017 .

[331]  Yutao Li,et al.  Photocatalytic CO2 Reduction by Carbon-Coated Indium-Oxide Nanobelts. , 2017, Journal of the American Chemical Society.

[332]  Hyuck-Mo Lee,et al.  Bifunctional Mechanism of CO2 Methanation on Pd-MgO/SiO2 Catalyst: Independent Roles of MgO and Pd on CO2 Methanation , 2010 .

[333]  Y. Wada,et al.  Effect of Surface Structures on Photocatalytic CO2 Reduction Using Quantized CdS Nanocrystallites , 1997 .

[334]  M. Grätzel,et al.  Transparent Cuprous Oxide Photocathode Enabling a Stacked Tandem Cell for Unbiased Water Splitting , 2015 .

[335]  Y. Hori,et al.  Enhanced formation of ethylene and alcohols at ambient temperature and pressure in electrochemical reduction of carbon dioxide at a copper electrode , 1988 .

[336]  Fei Wang,et al.  Active Site Dependent Reaction Mechanism over Ru/CeO2 Catalyst toward CO2 Methanation. , 2016, Journal of the American Chemical Society.

[337]  Marco-Tulio F. Rodrigues,et al.  Carbon Dioxide Hydrogenation over a Metal-Free Carbon-Based Catalyst , 2017 .

[338]  Peter Strasser,et al.  Particle size effects in the catalytic electroreduction of CO₂ on Cu nanoparticles. , 2014, Journal of the American Chemical Society.

[339]  Mietek Jaroniec,et al.  Semiconductor-based photocatalytic CO2 conversion , 2015 .

[340]  P. Yang,et al.  Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water , 2015, Science.

[341]  Nilay Shah,et al.  The role of CO 2 capture and utilization in mitigating climate change , 2017 .

[342]  A. Kiennemann,et al.  Role of the Alloy and Spinel in the Catalytic Behavior of Fe−Co/Cobalt Magnetite Composites under CO and CO2 Hydrogenation , 2002 .

[343]  Ping Liu,et al.  Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts , 2017, Science.

[344]  Xian Zhao,et al.  Surface dependence of CO2 adsorption on Zn2GeO4. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[345]  M. Koper,et al.  On-line mass spectrometry system for measurements at single-crystal electrodes in hanging meniscus configuration , 2006 .

[346]  A. Bard,et al.  Electrochemical and Surface Studies of Carbon Dioxide Reduction to Methane and Ethylene at Copper Electrodes in Aqueous Solutions , 1989 .

[347]  P. Ruiz,et al.  Mechanistic study of low temperature CO2 methanation over Rh/TiO2 catalysts , 2013 .

[348]  P. Ding,et al.  Enhancing activity for carbon dioxide methanation by encapsulating (1 1 1) facet Ni particle in metal–organic frameworks at low temperature , 2017 .

[349]  Q. Ge,et al.  In 2 O 3 as a promising catalyst for CO 2 utilization: A case study with reverse water gas shift over In 2 O 3 , 2014 .

[350]  Hubertus V. M. Hamelers,et al.  Microbial electrolysis cells for production of methane from CO2: long‐term performance and perspectives , 2012 .

[351]  Y. Hori,et al.  Electrochemical Reduction of Carbon Monoxide to Hydrocarbons at Various Metal Electrodes in Aqueous Solution , 1987 .

[352]  Arno de Klerk,et al.  Fischer–Tropsch refining: technology selection to match molecules , 2008 .

[353]  Yi Luo,et al.  Conversion of Dinitrogen to Ammonia by FeN3-Embedded Graphene. , 2016, Journal of the American Chemical Society.

[354]  P. Ajayan,et al.  Achieving Highly Efficient, Selective, and Stable CO2 Reduction on Nitrogen-Doped Carbon Nanotubes. , 2015, ACS nano.

[355]  D. Glasser,et al.  Fischer–Tropsch synthesis over iron catalysts supported on carbon nanotubes , 2005 .

[356]  R. Zennaro,et al.  Fischer–Tropsch synthesis on a Co/Al2O3 catalyst with CO2 containing syngas , 2009 .

[357]  Chunguang Chen,et al.  Stable and selective electrochemical reduction of carbon dioxide to ethylene on copper mesocrystals , 2015 .

[358]  Frederick W. Williams,et al.  Modeling and kinetic analysis of CO2 hydrogenation using a Mn and K-promoted Fe catalyst in a fixed-bed reactor , 2013 .

[359]  Jinhua Ye,et al.  Photoreduction of Carbon Dioxide Over NaNbO3 Nanostructured Photocatalysts , 2011 .

[360]  A. Majumdar,et al.  Opportunities and challenges for a sustainable energy future , 2012, Nature.

[361]  R. Lobo,et al.  Synthesis, characterization and photocatalytic properties of novel zinc germanate nano-materials , 2011 .

[362]  Suojiang Zhang,et al.  A highly active and stable Co4N/γ-Al2O3 catalyst for CO and CO2 methanation to produce synthetic natural gas (SNG) , 2015 .

[363]  Jae Kwang Lee,et al.  Insights into an autonomously formed oxygen-evacuated Cu2O electrode for the selective production of C2H4 from CO2. , 2015, Physical chemistry chemical physics : PCCP.

[364]  Marco Favaro,et al.  Subsurface Oxygen in Oxide-Derived Copper Electrocatalysts for Carbon Dioxide Reduction. , 2017, The journal of physical chemistry letters.

[365]  T. Matsui,et al.  Carbon dioxide methanation over Ni catalysts supported on various metal oxides , 2016 .

[366]  I. Chorkendorff,et al.  Methanation on mass-selected Ru nanoparticles on a planar SiO2 model support: The importance of under-coordinated sites , 2013 .

[367]  J. Augustynski,et al.  Long-Term Activation of the Copper Cathode in the Course of CO2 Reduction , 1994 .

[368]  Yao Zheng,et al.  Graphitic carbon nitride materials: controllable synthesis and applications in fuel cells and photocatalysis , 2012 .

[369]  B. Cheng,et al.  Direct evidence and enhancement of surface plasmon resonance effect on Ag-loaded TiO 2 nanotube arrays for photocatalytic CO 2 reduction , 2018 .

[370]  Ryuji Kikuchi,et al.  Ni/CeO2 catalysts with high CO2 methanation activity and high CH4 selectivity at low temperatures , 2012 .

[371]  K. Lillerud,et al.  Conversion of methanol to hydrocarbons: how zeolite cavity and pore size controls product selectivity. , 2012, Angewandte Chemie.

[372]  R. Asahi,et al.  Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides , 2001, Science.

[373]  Jing Shen,et al.  Catalysts and Reaction Pathways for the Electrochemical Reduction of Carbon Dioxide. , 2015, The journal of physical chemistry letters.

[374]  A. Peterson,et al.  Oxygen-induced changes to selectivity-determining steps in electrocatalytic CO2 reduction. , 2015, Physical chemistry chemical physics : PCCP.

[375]  Akira Murata,et al.  Electrochemical Reduction of CO at a Copper Electrode , 1997 .

[376]  Y. Surendranath,et al.  Inhibited proton transfer enhances Au-catalyzed CO2-to-fuels selectivity , 2016, Proceedings of the National Academy of Sciences.

[377]  Jingguang G. Chen,et al.  Molybdenum carbide as alternative catalysts to precious metals for highly selective reduction of CO2 to CO. , 2014, Angewandte Chemie.

[378]  Uwe Rodemerck,et al.  Unexpectedly efficient CO2 hydrogenation to higher hydrocarbons over non-doped Fe2O3 , 2017 .

[379]  Junsik Kim,et al.  Promotion of hydrocarbon selectivity in CO2 hydrogenation by Ru component , 2003 .

[380]  K. Hashimoto,et al.  Low-voltage electrochemical CO2 reduction by bacterial voltage-multiplier circuits. , 2013, Chemical communications.

[381]  Christof Knocke,et al.  Biofuels – challenges & chances: How biofuel development can benefit from advanced process technology , 2009 .

[382]  Jianmeng Chen,et al.  Photocatalytic Reduction of CO2 in Aqueous Solution on Surface-Fluorinated Anatase TiO2 Nanosheets with Exposed {001} Facets , 2014 .

[383]  Y. Hori,et al.  Electrochemical reduction of carbon dioxide at various series of copper single crystal electrodes , 2003 .

[384]  Yong Zhou,et al.  High-yield synthesis of ultrathin and uniform Bi₂WO₆ square nanoplates benefitting from photocatalytic reduction of CO₂ into renewable hydrocarbon fuel under visible light. , 2011, ACS applied materials & interfaces.

[385]  Marta I. Litter,et al.  Photocatalytic properties of iron-doped titania semiconductors , 1996 .

[386]  Anne-Cécile Roger,et al.  Methanation of carbon dioxide over nickel-based Ce0.72Zr0.28O2 mixed oxide catalysts prepared by sol–gel method , 2009 .

[387]  M. Virginie,et al.  Pore size effects in high-temperature Fischer-Tropsch synthesis over supported iron catalysts , 2015 .

[388]  Abdullah M. Asiri,et al.  Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold–copper bimetallic nanoparticles , 2014, Nature Communications.

[389]  F. Chang,et al.  Hydrogenation of CO2 over nickel catalysts on rice husk ash-alumina prepared by incipient wetness impregnation , 2003 .

[390]  J. S. Lee,et al.  Carbonate-coordinated cobalt co-catalyzed BiVO4/WO3 composite photoanode tailored for CO2 reduction to fuels , 2015 .

[391]  G. Patriarche,et al.  Selective CO2 methanation on Ru/TiO2 catalysts: unravelling the decisive role of the TiO2 support crystal structure , 2016 .

[392]  Patricio Ruiz,et al.  Improving the hydrogenation function of Pd/γ-Al2O 3 catalyst by Rh/γ-Al2O3 Addition in CO2 methanation at low temperature , 2013 .

[393]  Haotian Wang,et al.  Metal ion cycling of Cu foil for selective C–C coupling in electrochemical CO2 reduction , 2018, Nature Catalysis.

[394]  J. Wu,et al.  A novel twin reactor for CO2 photoreduction to mimic artificial photosynthesis , 2013 .

[395]  Y. Kang,et al.  A review: Effect of nanostructures on photocatalytic CO2 conversion over metal oxides and compound semiconductors , 2017 .

[396]  Su-jin Kim,et al.  Adsorbed Carbon Formation and Carbon Hydrogenation for CO 2 Methanation on the Ni(111) Surface: ASED-MO Study , 2005 .

[397]  Akira Murata,et al.  PRODUCTION OF METHANE AND ETHYLENE IN ELECTROCHEMICAL REDUCTION OF CARBON DIOXIDE AT COPPER ELECTRODE IN AQUEOUS HYDROGENCARBONATE SOLUTION , 1986 .

[398]  N. Dimitrijević,et al.  Synthesizing mixed-phase TiO2 nanocomposites using a hydrothermal method for photo-oxidation and photoreduction applications , 2008 .

[399]  Toshio Tsukamoto,et al.  Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media , 1994 .

[400]  Tao Zhang,et al.  Influence of pretreatment temperature on catalytic performance of rutile TiO2-supported ruthenium catalyst in CO2 methanation , 2016 .

[401]  I. Chorkendorff,et al.  CO2 Electroreduction on Well-Defined Bimetallic Surfaces: Cu Overlayers on Pt(111) and Pt(211) , 2013 .

[402]  T. Peng,et al.  Ag-loading on brookite TiO2 quasi nanocubes with exposed {2 1 0} and {0 0 1} facets: Activity and selectivity of CO2 photoreduction to CO/CH4 , 2016 .

[403]  Osamu Ishitani,et al.  Photocatalytic reduction of carbon dioxide to methane and acetic acid by an aqueous suspension of metal-deposited TiO2 , 1993 .

[404]  Gabor A. Somorjai,et al.  The photoassisted reaction of gaseous water and carbon dioxide adsorbed on the SrTiO3 (111) crystal face to form methane , 1978 .

[405]  G. Lu,et al.  Synthesis of anatase TiO2 rods with dominant reactive {010} facets for the photoreduction of CO2 to CH4 and use in dye-sensitized solar cells. , 2011, Chemical communications.

[406]  Shoushan Fan,et al.  Grain-boundary-dependent CO2 electroreduction activity. , 2015, Journal of the American Chemical Society.

[407]  X. Verykios,et al.  Effects of Carrier Doping on Kinetic Parameters of CO2 Hydrogenation on Supported Rhodium Catalysts , 1994 .

[408]  Ture R. Munter,et al.  Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces. , 2007, Physical review letters.

[409]  Andrew A. Peterson,et al.  How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels , 2010 .

[410]  Chunshan Song,et al.  Light olefin synthesis from CO2 hydrogenation over K-promoted Fe-Co bimetallic catalysts , 2015 .

[411]  Seoin Back,et al.  Selective Heterogeneous CO2 Electroreduction to Methanol , 2015 .

[412]  Yanwei Lum,et al.  Sequential catalysis controls selectivity in electrochemical CO2 reduction on Cu , 2018 .

[413]  Curtis P. Berlinguette,et al.  Electrolysis of CO2 to Syngas in Bipolar Membrane-Based Electrochemical Cells , 2016 .

[414]  James R. McKone,et al.  Solar water splitting cells. , 2010, Chemical reviews.

[415]  Todd G. Deutsch,et al.  Direct solar-to-hydrogen conversion via inverted metamorphic multi-junction semiconductor architectures , 2017, Nature Energy.

[416]  Robert J. Farrauto,et al.  Catalytic and adsorption studies for the hydrogenation of CO2 to methane , 2014 .

[417]  Seng Sing Tan,et al.  Photosynthesis of hydrogen and methane as key components for clean energy system , 2007 .

[418]  F. Chang,et al.  Hydrogenation of CO2 over nickel catalysts supported on rice husk ash prepared by ion exchange , 2001 .

[419]  Xiang Li,et al.  Spectroscopic Observation of Reversible Surface Reconstruction of Copper Electrodes under CO2 Reduction , 2017 .

[420]  Di Wu,et al.  Single-crystalline, ultrathin ZnGa(2)O(4) nanosheet scaffolds to promote photocatalytic activity in CO(2) reduction into methane. , 2014, ACS applied materials & interfaces.

[421]  M. Azuma,et al.  Design of Allory Electrocatalysts for CO 2 Reduction (I).The Selective and Reversible Reduction of CO 2 at Cu-Ni Alloy Electrodes , 1991 .

[422]  J. Fierro,et al.  Effect of Mn loading onto MnFeO nanocomposites for the CO2 hydrogenation reaction , 2015 .

[423]  Aaron J. Sathrum,et al.  Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels. , 2009, Chemical Society reviews.

[424]  Andrew J. Wilson,et al.  Opportunities and Challenges of Solar-Energy-Driven Carbon Dioxide to Fuel Conversion with Plasmonic Catalysts , 2017 .

[425]  F. Solymosi,et al.  Effects of variation of electric properties of TiO2 support on hydrogenation of CO and CO2 over Rh catalysts , 1985 .

[426]  D. Simakov,et al.  Heat removal and catalyst deactivation in a Sabatier reactor for chemical fixation of CO2: Simulation-based analysis , 2017 .

[427]  Dean Roemmich,et al.  Unabated planetary warming and its ocean structure since 2006 , 2015 .

[428]  I. Chorkendorff,et al.  Quantifying the promotion of Cu catalysts by ZnO for methanol synthesis , 2016, Science.

[429]  Z. Zou,et al.  Photophysical and photocatalytic properties of ANbO3 (A=Na, K) photocatalysts , 2012 .

[430]  M. Grätzel,et al.  FTIR spectroscopic study of the interaction of CO2 and CO2 + H2 over partially oxidized Ru/TiO2 catalyst , 1994 .

[431]  Chunguang Chen,et al.  Selective Electrochemical Reduction of Carbon Dioxide to Ethylene and Ethanol on Copper(I) Oxide Catalysts , 2015 .

[432]  G. Somorjai,et al.  A nanoscale demonstration of hydrogen atom spillover and surface diffusion across silica using the kinetics of CO2 methanation catalyzed on spatially separate Pt and Co nanoparticles. , 2014, Nano letters.

[433]  Jinhua Ye,et al.  General synthesis of hybrid TiO2 mesoporous "french fries" toward improved photocatalytic conversion of CO2 into hydrocarbon fuel: a case of TiO2/ZnO. , 2011, Chemistry.

[434]  Jun Liu,et al.  Progress in adsorption-based CO2 capture by metal-organic frameworks. , 2012, Chemical Society reviews.

[435]  Jinhua Ye,et al.  Porous-structured Cu2O/TiO2 nanojunction material toward efficient CO2 photoreduction , 2014, Nanotechnology.

[436]  John P. Baltrus,et al.  Visible Light Photoreduction of CO2 Using CdSe/Pt/TiO2 Heterostructured Catalysts , 2009 .

[437]  Zhimin Liu,et al.  Synthesis of chemicals using CO2 as a building block under mild conditions , 2016 .

[438]  Y. Taufiq-Yap,et al.  Highly active Ni-promoted mesostructured silica nanoparticles for CO2 methanation , 2014 .

[439]  Katsuhei Kikuchi,et al.  Production of CO and CH4 in electrochemical reduction of CO2 at metal electrodes in aqueous hydrogencarbonate solution. , 1985 .

[440]  K. Okada,et al.  Preparation and photocatalytic reduction of CO2 on noble metal (Pt, Pd, Au) loaded Zn–Cr layered double hydroxides , 2013 .

[441]  Dong Ha Kim,et al.  Composite hollow nanostructures composed of carbon-coated Ti3+ self-doped TiO2-reduced graphene oxide as an efficient electrocatalyst for oxygen reduction , 2017 .

[442]  Vincent Laporte,et al.  Highly active oxide photocathode for photoelectrochemical water reduction. , 2011, Nature materials.

[443]  Y. Hori,et al.  Adsorption of CO, intermediately formed in electrochemical reduction of CO2, at a copper electrode , 1991 .

[444]  T. Lian,et al.  Quantum confined colloidal nanorod heterostructures for solar-to-fuel conversion. , 2016, Chemical Society reviews.

[445]  Chun-Hua Yan,et al.  Low-Temperature CO2 Methanation over CeO2-Supported Ru Single Atoms, Nanoclusters, and Nanoparticles Competitively Tuned by Strong Metal–Support Interactions and H-Spillover Effect , 2018 .

[446]  Ki-Won Jun,et al.  Kinetics of CO2 Hydrogenation on a K-Promoted Fe Catalyst , 2001 .

[447]  P. Bertrand,et al.  CO2 methanation on Rh/γ-Al2O3 catalyst at low temperature: “In situ” supply of hydrogen by Ni/activated carbon catalyst , 2012 .

[448]  T. Riedel,et al.  Fischer–Tropsch on Iron with H2/CO and H2/CO2 as Synthesis Gases: The Episodes of Formation of the Fischer–Tropsch Regime and Construction of the Catalyst , 2003 .

[449]  Dimitri D. Vaughn,et al.  Hybrid CuO-TiO(2-x)N(x) hollow nanocubes for photocatalytic conversion of CO2 into methane under solar irradiation. , 2012, Angewandte Chemie.

[450]  W. Budzianowski Energy efficient solvents for CO2 capture by gas-liquid absorption - compounds, blends and advanced solvent systems , 2017 .

[451]  B. Rieger,et al.  Transformation of carbon dioxide with homogeneous transition-metal catalysts: a molecular solution to a global challenge? , 2011, Angewandte Chemie.

[452]  Yuhan Sun,et al.  Influence of Zr on the performance of Cu/Zn/Al/Zr catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol , 2013 .

[453]  G. Deo,et al.  A potential descriptor for the CO2 hydrogenation to CH4 over Al2O3 supported Ni and Ni-based alloy catalysts , 2017 .

[454]  Wenguang Tu,et al.  An In Situ Simultaneous Reduction‐Hydrolysis Technique for Fabrication of TiO2‐Graphene 2D Sandwich‐Like Hybrid Nanosheets: Graphene‐Promoted Selectivity of Photocatalytic‐Driven Hydrogenation and Coupling of CO2 into Methane and Ethane , 2013 .

[455]  Yun Huang,et al.  Mechanistic Insights into the Enhanced Activity and Stability of Agglomerated Cu Nanocrystals for the Electrochemical Reduction of Carbon Dioxide to n-Propanol. , 2016, The journal of physical chemistry letters.

[456]  D. Debecker,et al.  CO2 hydrogenation with shape-controlled Pd nanoparticles embedded in mesoporous silica: elucidating stability and selectivity issues , 2015 .

[457]  F. Kapteijn,et al.  Adsorptive separation of light olefin/paraffin mixtures , 2006 .

[458]  Yun Huang,et al.  Mechanistic Insights into the Selective Electroreduction of Carbon Dioxide to Ethylene on Cu2O-Derived Copper Catalysts , 2016 .

[459]  J. Rasko FTIR study of the photoinduced dissociation of CO2 on titania-supported noble metals , 1998 .

[460]  M. Gattrell,et al.  Calculation for the cathode surface concentrations in the electrochemical reduction of CO2 in KHCO3 solutions , 2006 .

[461]  A. Fujishima,et al.  Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders , 1979, Nature.

[462]  S. Reyes,et al.  Transport-enhanced α-olefin readsorption pathways in Ru-catalyzed hydrocarbon synthesis , 1991 .

[463]  Thomas F. Jaramillo,et al.  New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces , 2012 .

[464]  A. Kudo,et al.  Photocatalytic reduction of carbon dioxide over Ag cocatalyst-loaded ALa4Ti4O15 (A = Ca, Sr, and Ba) using water as a reducing reagent. , 2011, Journal of the American Chemical Society.

[465]  F. Solymosi,et al.  Catalytic hydrogenation of CO2 over supported palladium , 1986 .

[466]  G. Bonura,et al.  Structure–activity relationships of Fe-Co/K-Al2O3 catalysts calcined at different temperatures for CO2 hydrogenation to light olefins , 2017 .

[467]  Liqun Kang,et al.  Methanation of Carbon Dioxide over Zeolite‐Encapsulated Nickel Nanoparticles , 2018 .

[468]  Andrew A. Peterson,et al.  Structure effects on the energetics of the electrochemical reduction of CO2 by copper surfaces , 2011 .

[469]  E. Stach,et al.  Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene , 2016, Nature Communications.

[470]  K. Schulte,et al.  Effect of crystal phase composition on the reductive and oxidative abilities of TiO2 nanotubes under UV and visible light , 2010 .

[471]  A. Khodakov,et al.  Promotion of Cobalt Fischer-Tropsch Catalysts with Noble Metals: a Review , 2009 .

[472]  Zhaojie Jiao,et al.  Role of surface Ni and Ce species of Ni/CeO 2 catalyst in CO 2 methanation , 2016 .

[473]  Yi Cui,et al.  The path towards sustainable energy. , 2016, Nature materials.

[474]  S. Nam,et al.  The catalytic conversion of CO2 to hydrocarbons over Fe–K supported on Al2O3–MgO mixed oxides , 1998 .

[475]  M. Mercedes Maroto-Valer,et al.  An overview of current status of carbon dioxide capture and storage technologies , 2014 .

[476]  T. Agapie,et al.  CO2 Reduction Selective for C≥2 Products on Polycrystalline Copper with N-Substituted Pyridinium Additives , 2017, ACS central science.

[477]  Gongxuan Lu,et al.  The effect of impregnation strategy on structural characters and CO2 methanation properties over MgO modified Ni/SiO2 catalysts , 2014 .

[478]  Abhijit Dutta,et al.  Morphology Matters: Tuning the Product Distribution of CO2 Electroreduction on Oxide-Derived Cu Foam Catalysts , 2016 .

[479]  Richard L. Kurtz,et al.  Electrochemical Reduction of CO2 to CH3OH at Copper Oxide Surfaces , 2011 .

[480]  Phillip Christopher,et al.  Direct Photocatalysis by Plasmonic Nanostructures , 2014 .

[481]  Jiaguo Yu,et al.  Cubic anatase TiO2 nanocrystals with enhanced photocatalytic CO2 reduction activity. , 2015, Chemical communications.

[482]  R. Kikuchi,et al.  Promotion of CO2 methanation activity and CH4 selectivity at low temperatures over Ru/CeO2/Al2O3 catalysts , 2014 .

[483]  Andrew A. Peterson,et al.  Activity Descriptors for CO2 Electroreduction to Methane on Transition-Metal Catalysts , 2012 .

[484]  J. Biskupek,et al.  Selective CO Methanation on Ru/TiO2 Catalysts: Role and Influence of Metal–Support Interactions , 2015 .

[485]  O. Edenhofer,et al.  Climate change 2014 : mitigation of climate change , 2014 .

[486]  Y. Hori,et al.  Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution , 1990 .

[487]  J. Grunwaldt,et al.  Methanation of CO2: Structural response of a Ni-based catalyst under fluctuating reaction conditions unraveled by operando spectroscopy , 2015 .

[488]  A. Panacek,et al.  CdS nanoparticles deposited on montmorillonite: preparation, characterization and application for photoreduction of carbon dioxide. , 2011, Journal of colloid and interface science.

[489]  M. Koper,et al.  Electrochemical carbon dioxide and bicarbonate reduction on copper in weakly alkaline media , 2013, Journal of Solid State Electrochemistry.

[490]  Pierre Van Rysselberghe,et al.  Reduction of Carbon Dioxide on Mercury Cathodes , 1954 .

[491]  Maria Sudiro,et al.  Production of synthetic gasoline and diesel fuel by alternative processes using natural gas and coal: Process simulation and optimization , 2009 .

[492]  Y. Shimizu,et al.  Photocatalytic reduction of high pressure carbon dioxide using TiO2 powders with a positive hole scavenger , 1998 .

[493]  Suljo Linic,et al.  Catalytic conversion of solar to chemical energy on plasmonic metal nanostructures , 2018, Nature Catalysis.

[494]  Jiujun Zhang,et al.  A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. , 2014, Chemical Society reviews.

[495]  Yi Cheng,et al.  Bimetallic Ni–Fe total-methanation catalyst for the production of substitute natural gas under high pressure , 2013 .

[496]  Matthew W Kanan,et al.  CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films. , 2012, Journal of the American Chemical Society.

[497]  Dong Ha Kim,et al.  Biomineralized N-doped CNT/TiO2 core/shell nanowires for visible light photocatalysis. , 2012, ACS nano.

[498]  Hans Schulz,et al.  Fischer–Tropsch principles of co-hydrogenation on iron catalysts , 2005 .

[499]  Ping Liu,et al.  Tuning Selectivity of CO2 Hydrogenation Reactions at the Metal/Oxide Interface. , 2017, Journal of the American Chemical Society.

[500]  G. Lu,et al.  Hollow Anatase TiO2 Single Crystals and Mesocrystals with Dominant {101} Facets for Improved Photocatalysis Activity and Tuned Reaction Preference , 2012 .

[501]  Jiaguo Yu,et al.  Photocatalytic reduction of CO2 into hydrocarbon solar fuels over g-C3N4-Pt nanocomposite photocatalysts. , 2014, Physical chemistry chemical physics : PCCP.

[502]  B. A. Rosen,et al.  Renewable and metal-free carbon nanofibre catalysts for carbon dioxide reduction , 2013, Nature Communications.

[503]  Chi-Kung Kuei,et al.  Hydrogenation of carbon dioxide by hybrid catalysts, direct synthesis of aromatics from carbon dioxide and hydrogen , 1991 .

[504]  D. Su,et al.  A Surface Defect-Promoted Ni Nanocatalyst with Simultaneously Enhanced Activity and Stability , 2013 .

[505]  N. Wagner,et al.  Electrochemical reduction of CO2 to formate at high current density using gas diffusion electrodes , 2014, Journal of Applied Electrochemistry.

[506]  T. Inui Highly effective gasoline synthesis from carbon dioxide , 1997 .

[507]  N. Takezawa,et al.  Methanation of carbon dioxide: preparation of Ni/MgO catalysts and their performance , 1986 .

[508]  Wenhui Li,et al.  ZrO2 support imparts superior activity and stability of Co catalysts for CO2 methanation , 2018 .

[509]  Michael B. Ross,et al.  Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction , 2018, Nature Catalysis.

[510]  M. Anpo,et al.  Photocatalytic Reduction of CO2 with H2O on Ti−β Zeolite Photocatalysts: Effect of the Hydrophobic and Hydrophilic Properties , 2001 .

[511]  K. W. Frese,et al.  Electrochemical Reduction of Carbon Dioxide to Methane, Methanol, and CO on Ru Electrodes , 1985 .

[512]  Yu Jin Jang,et al.  Plasmonic Solar Cells: From Rational Design to Mechanism Overview. , 2016, Chemical reviews.

[513]  K. Lillerud,et al.  The formation and degradation of active species during methanol conversion over protonated zeotype catalysts. , 2015, Chemical Society reviews.

[514]  Hailiang Wang,et al.  Self-Cleaning Catalyst Electrodes for Stabilized CO2 Reduction to Hydrocarbons. , 2017, Angewandte Chemie.

[515]  J. Hofkens,et al.  Dopant-induced electron localization drives CO2 reduction to C2 hydrocarbons , 2018, Nature Chemistry.

[516]  Suljo Linic,et al.  Catalytic and photocatalytic transformations on metal nanoparticles with targeted geometric and plasmonic properties. , 2013, Accounts of chemical research.

[517]  P. Notten,et al.  High‐Efficiency InP‐Based Photocathode for Hydrogen Production by Interface Energetics Design and Photon Management , 2016 .

[518]  Mark C Hersam,et al.  Effect of Dimensionality on the Photocatalytic Behavior of Carbon-Titania Nanosheet Composites: Charge Transfer at Nanomaterial Interfaces. , 2012, The journal of physical chemistry letters.

[519]  Joshua M. Spurgeon,et al.  A comparative technoeconomic analysis of pathways for commercial electrochemical CO2 reduction to liquid products , 2018 .

[520]  Qinghong Zhang,et al.  Photocatalytic conversion of carbon dioxide with water into methane: platinum and copper(I) oxide co-catalysts with a core-shell structure. , 2013, Angewandte Chemie.

[521]  Paul J. A. Kenis,et al.  Influence of dilute feed and pH on electrochemical reduction of CO2 to CO on Ag in a continuous flow electrolyzer , 2015 .

[522]  Oleksandr Voznyy,et al.  Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration , 2016, Nature.

[523]  A. Bell,et al.  Direct Observation of the Local Reaction Environment during the Electrochemical Reduction of CO2. , 2018, Journal of the American Chemical Society.

[524]  Qiuye Li,et al.  Synergistic effect of surface and bulk single-electron-trapped oxygen vacancy of TiO2 in the photocatalytic reduction of CO2 , 2017 .

[525]  Fereshteh Meshkani,et al.  Preparation of highly active nickel catalysts supported on mesoporous nanocrystalline γ-Al2O3 for CO2 methanation , 2014 .

[526]  P. Dyson,et al.  Direct synthesis of formic acid from carbon dioxide by hydrogenation in acidic media , 2014, Nature Communications.

[527]  Yu Huang,et al.  General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities , 2018, Nature Catalysis.

[528]  Joseph H. Montoya,et al.  CO-CO coupling on Cu facets: Coverage, strain and field effects , 2016 .

[529]  C. H. Bartholomew,et al.  Hydrogenation of carbon dioxide on group viii metals: III, Effects of support on activity/selectivity and adsorption properties of nickel , 1983 .

[530]  Q. Fu,et al.  Selective conversion of syngas to light olefins , 2016, Science.

[531]  C. Cannas,et al.  Highly active NiO-CeO2 catalysts for synthetic natural gas production by CO2 methanation , 2018 .