Experimental and numerical study of ball size effect on restitution coefficient in low velocity impacts

[1]  A. W. Crook A study of some impacts between metal bodies by a piezo-electric method , 1952, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[2]  W. Goldsmith,et al.  Impact: the theory and physical behaviour of colliding solids. , 1960 .

[3]  Joseph Edward Shigley,et al.  Mechanical engineering design , 1972 .

[4]  Y. Tatara,et al.  Study on Impact of Equivalent Two Bodies : Coefficients of Restitution of Spheres of Brass, Lead, Glass, Porcelain and Agate, and the Material Properties , 1982 .

[5]  R. Hibbeler Engineering Mechanics: Dynamics , 1986 .

[6]  R. L. Braun,et al.  Viscosity, granular‐temperature, and stress calculations for shearing assemblies of inelastic, frictional disks , 1986 .

[7]  C. Thornton Coefficient of Restitution for Collinear Collisions of Elastic-Perfectly Plastic Spheres , 1997 .

[8]  K. Schiffner,et al.  Simulation of residual stresses by shot peening , 1999 .

[9]  L. Vu-Quoc,et al.  An elastoplastic contact force–displacement model in the normal direction: displacement–driven version , 1999, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[10]  L. Vu-Quoc,et al.  A Normal Force-Displacement Model for Contacting Spheres Accounting for Plastic Deformation: Force-Driven Formulation , 2000 .

[11]  Emmanuelle Rouhaud,et al.  3D Finite Element Models of Shot Peening Processes , 2000 .

[12]  L. Vu-Quoc,et al.  Normal and tangential force-displacement relations for frictional elasto-plastic contact of spheres , 2001 .

[13]  Mario Guagliano,et al.  Relating Almen intensity to residual stresses induced by shot peening: a numerical approach , 2001 .

[14]  S. Baragetti Three-dimensional finite-element procedures for shot peeening residual stress filed prediction , 2001 .

[15]  L. Vu-Quoc,et al.  Modeling the dependence of the coefficient of restitution on the impact velocity in elasto-plastic collisions , 2002 .

[16]  C. Thornton,et al.  Rebound behaviour of spheres for plastic impacts , 2003 .

[17]  Michele Meo,et al.  Finite element analysis of residual stress induced by shot peening process , 2003 .

[18]  Bahram Ravani,et al.  Work equivalent composite coefficient of restitution , 2004 .

[19]  Xiang Zhang,et al.  An accurate tangential force-displacement model for granular-flow simulations: contacting spheres with plastic deformation, force-driven formulation , 2004 .

[20]  G. Weir,et al.  The coefficient of restitution for normal incident, low velocity particle impacts , 2005 .

[21]  Christine M. Hrenya,et al.  Comparison of soft-sphere models to measurements of collision properties during normal impacts , 2005 .

[22]  A. Alavi Nia,et al.  A three-dimensional simulation of shot peening process using multiple shot impacts , 2005 .

[23]  Christoph Glocker,et al.  EXPERIMENTAL TREATMENT OF MULTIPLE-CONTACT-COLLISIONS , 2005 .

[24]  Peter Eberhard,et al.  Elastoplastic phenomena in multibody impact dynamics , 2006 .

[25]  Abdelwaheb Dogui,et al.  Finite element modelling of shot peening process: Prediction of the compressive residual stresses, the plastic deformations and the surface integrity☆ , 2006 .

[26]  Loc Vu-Quoc,et al.  An accurate elasto-plastic frictional tangential force-displacement model for granular-flow simulations: Displacement-driven formulation , 2007, J. Comput. Phys..

[27]  Jin Y. Ooi,et al.  A numerical simulation to relate the shot peening parameters to the induced residual stresses , 2008 .

[28]  H. Minamoto,et al.  Effects of material strain rate sensitivity in low speed impact between two identical spheres , 2009 .

[29]  Jem A. Rongong,et al.  Energy dissipation prediction of particle dampers , 2009 .