A new mechanistic understanding of light-limitation in the seagrass Zostera muelleri.

[1]  J. Raven,et al.  Low oxygen affects photophysiology and the level of expression of two-carbon metabolism genes in the seagrass Zostera muelleri , 2018, Photosynthesis Research.

[2]  J. Raven,et al.  Carbon-concentrating mechanisms in seagrasses , 2017, Journal of experimental botany.

[3]  S. Beer,et al.  Depth-specific fluctuations of gene expression and protein abundance modulate the photophysiology in the seagrass Posidonia oceanica , 2017, Scientific Reports.

[4]  J. Ruíz,et al.  Long‐term acclimation to reciprocal light conditions suggests depth‐related selection in the marine foundation species Posidonia oceanica , 2017, Ecology and evolution.

[5]  P. Ralph,et al.  Proteome Analysis Reveals Extensive Light Stress-Response Reprogramming in the Seagrass Zostera muelleri (Alismatales, Zosteraceae) Metabolism , 2017, Front. Plant Sci..

[6]  L. Migliore,et al.  Ecophysiological Plasticity and Bacteriome Shift in the Seagrass Halophila stipulacea along a Depth Gradient in the Northern Red Sea , 2017, Front. Plant Sci..

[7]  P. Macreadie,et al.  Molecular physiology reveals ammonium uptake and related gene expression in the seagrass Zostera muelleri. , 2016, Marine environmental research.

[8]  E. Bornberg-Bauer,et al.  Phylogeographic differentiation versus transcriptomic adaptation to warm temperatures in Zostera marina, a globally important seagrass , 2016, Molecular ecology.

[9]  J. Bornman,et al.  Adjustment of photoprotection to tidal conditions in intertidal seagrasses , 2016, Journal of the Marine Biological Association of the United Kingdom.

[10]  Agnieszka A. Golicz,et al.  The emergence of molecular profiling and omics techniques in seagrass biology; furthering our understanding of seagrasses , 2016, Functional & Integrative Genomics.

[11]  C. K. Chan,et al.  The Genome of a Southern Hemisphere Seagrass Species (Zostera muelleri)1[OPEN] , 2016, Plant Physiology.

[12]  Sangil Kim,et al.  Photoacclimatory Responses of Zostera marina in the Intertidal and Subtidal Zones , 2016, PloS one.

[13]  N. Baliga,et al.  Pan-transcriptomic analysis identifies coordinated and orthologous functional modules in the diatoms Thalassiosira pseudonana and Phaeodactylum tricornutum. , 2016, Marine genomics.

[14]  Erich Bornberg-Bauer,et al.  The genome of the seagrass Zostera marina reveals angiosperm adaptation to the sea , 2016, Nature.

[15]  M. Cao,et al.  Identification of light-harvesting chlorophyll a/b-binding protein genes of Zostera marina L. and their expression under different environmental conditions , 2016, Journal of Ocean University of China.

[16]  Pengcheng Fu,et al.  NdhM Subunit Is Required for the Stability and the Function of NAD(P)H Dehydrogenase Complexes Involved in CO2 Uptake in Synechocystis sp. Strain PCC 6803* , 2015, The Journal of Biological Chemistry.

[17]  Su-May Yu,et al.  Source-Sink Communication: Regulated by Hormone, Nutrient, and Stress Cross-Signaling. , 2015, Trends in plant science.

[18]  P. Ralph,et al.  Evaluation of Reference Genes for RT-qPCR Studies in the Seagrass Zostera muelleri Exposed to Light Limitation , 2015, Scientific Reports.

[19]  P. Magalhães,et al.  Partitioning between primary and secondary metabolism of carbon allocated to roots in four maize genotypes under water deficit and its effects on productivity , 2015 .

[20]  P. Ralph,et al.  Development of a molecular biology tool kit to monitor dredging-related light stress in the seagrass Zostera muelleri ssp. capricorni in Port Curtis , 2015 .

[21]  Diana Santelia,et al.  New insights into redox control of starch degradation. , 2015, Current opinion in plant biology.

[22]  T. Reusch,et al.  Genotype-specific responses to light stress in eelgrass Zostera marina, a marine foundation plant , 2015 .

[23]  C. K. Chan,et al.  Genome-wide survey of the seagrass Zostera muelleri suggests modification of the ethylene signalling network , 2015, Journal of experimental botany.

[24]  Qiang Li,et al.  Understanding the Biochemical Basis of Temperature-Induced Lipid Pathway Adjustments in Plants , 2015, Plant Cell.

[25]  Yutaka Suzuki,et al.  Phytochrome controls alternative splicing to mediate light responses in Arabidopsis , 2014, Proceedings of the National Academy of Sciences.

[26]  R. Dolferus,et al.  To grow or not to grow: a stressful decision for plants. , 2014, Plant science : an international journal of experimental plant biology.

[27]  Y. Mao,et al.  De Novo Assembly and Characterization of the Transcriptome of Seagrass Zostera marina Using Illumina Paired-End Sequencing , 2014, PloS one.

[28]  Chao Xie,et al.  Fast and sensitive protein alignment using DIAMOND , 2014, Nature Methods.

[29]  R. Sanges,et al.  Response of the seagrass Posidonia oceanica to different light environments: Insights from a combined molecular and photo-physiological study. , 2014, Marine environmental research.

[30]  E. Bornberg-Bauer,et al.  Genome-wide transcriptomic responses of the seagrasses Zostera marina and Nanozostera noltii under a simulated heatwave confirm functional types. , 2014, Marine genomics.

[31]  J. Bornman,et al.  Site specific differences in morphometry and photophysiology in intertidal Zostera muelleri meadows , 2014 .

[32]  D. Kopsell,et al.  Abscisic Acid Increases Carotenoid and Chlorophyll Concentrations in Leaves and Fruit of Two Tomato Genotypes , 2014 .

[33]  Björn Usadel,et al.  Trimmomatic: a flexible trimmer for Illumina sequence data , 2014, Bioinform..

[34]  P. Macreadie,et al.  Molecular indicators of chronic seagrass stress : A new era in the management of seagrass ecosystems? , 2014 .

[35]  A. Olds,et al.  Phenotypic plasticity promotes persistence following severe events: physiological and morphological responses of seagrass to flooding , 2014 .

[36]  Rui Santos,et al.  Physiological Responses of Zostera marina and Cymodocea nodosa to Light-Limitation Stress , 2013, PloS one.

[37]  R. Finkelstein,et al.  Abscisic Acid Synthesis and Response , 2013, The arabidopsis book.

[38]  P. Macreadie,et al.  Physiological and Morphological Responses of the Temperate Seagrass Zostera muelleri to Multiple Stressors: Investigating the Interactive Effects of Light and Temperature , 2013, PloS one.

[39]  P. Lavery,et al.  Identifying robust bioindicators of light stress in seagrasses: A meta-analysis , 2013 .

[40]  P. Bayer,et al.  Acclimation to different depths by the marine angiosperm Posidonia oceanica: transcriptomic and proteomic profiles , 2013, Front. Plant Sci..

[41]  Peter J. Ralph,et al.  Seasonal heterogeneity in the photophysiological response to air exposure in two tropical intertidal seagrass species , 2013 .

[42]  A. Krieger-Liszkay,et al.  The role of the PsbS protein in the protection of photosystems I and II against high light in Arabidopsis thaliana. , 2012, Biochimica et biophysica acta.

[43]  C. Funk,et al.  FtsH proteases located in the plant chloroplast. , 2012, Physiologia plantarum.

[44]  Davis J. McCarthy,et al.  Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation , 2012, Nucleic acids research.

[45]  H. Jaafar,et al.  Involvement of Nitrogen on Flavonoids, Glutathione, Anthocyanin, Ascorbic Acid and Antioxidant Activities of Malaysian Medicinal Plant Labisia pumila Blume (Kacip Fatimah) , 2011, International journal of molecular sciences.

[46]  Q. Zhang,et al.  The antioxidative role of anthocyanins in Arabidopsis under high-irradiance , 2011, Biologia Plantarum.

[47]  Gokare A. Ravishankar,et al.  Influence of abiotic stress signals on secondary metabolites in plants , 2011, Plant signaling & behavior.

[48]  Colin N. Dewey,et al.  RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome , 2011, BMC Bioinformatics.

[49]  F. Sato,et al.  Molecular functions of PsbP and PsbQ proteins in the photosystem II supercomplex. , 2011, Journal of photochemistry and photobiology. B, Biology.

[50]  W. Plaxton,et al.  The remarkable diversity of plant PEPC (phosphoenolpyruvate carboxylase): recent insights into the physiological functions and post-translational controls of non-photosynthetic PEPCs. , 2011, The Biochemical journal.

[51]  Xiaoyi Li,et al.  LTD is a protein required for sorting light-harvesting chlorophyll-binding proteins to the chloroplast SRP pathway. , 2011, Nature communications.

[52]  K. Goto,et al.  Chlorophyll a : b Ratio Increases Under Low-light in 'Shade-tolerant' Euglena gracilis , 2011 .

[53]  S. Beer,et al.  Photoacclimation of the seagrass Halophila stipulacea to the dim irradiance at its 48‐meter depth limit , 2011 .

[54]  M. Zubik,et al.  Photoprotective role of the xanthophyll cycle studied by means of modeling of xanthophyll–LHCII interactions , 2010 .

[55]  A. Quéro,et al.  Trehalose and plant stress responses: friend or foe? , 2010, Trends in plant science.

[56]  K. Ogawa,et al.  A qualitative analysis of the regulation of cyclic electron flow around photosystem I from the post-illumination chlorophyll fluorescence transient in Arabidopsis: a new platform for the in vivo investigation of the chloroplast redox state , 2010, Photosynthesis Research.

[57]  Mark D. Robinson,et al.  edgeR: a Bioconductor package for differential expression analysis of digital gene expression data , 2009, Bioinform..

[58]  W. Sakamoto,et al.  Protein quality control in chloroplasts: a current model of D1 protein degradation in the photosystem II repair cycle. , 2009, Journal of biochemistry.

[59]  W. G. Brenner,et al.  Selection of plastid- and nuclear-encoded reference genes to study the effect of altered endogenous cytokinin content on photosynthesis genes in Nicotiana tabacum , 2009, Photosynthesis Research.

[60]  F. Gubler,et al.  Regulation of Dormancy in Barley by Blue Light and After-Ripening: Effects on Abscisic Acid and Gibberellin Metabolism1[W] , 2008, Plant Physiology.

[61]  P. Lavery,et al.  Physiological characteristics of the seagrass Posidonia sinuosa along a depth-related gradient of light availability , 2008 .

[62]  P. Ralph,et al.  Impact of light limitation on seagrasses , 2007 .

[63]  Ullas V. Pedmale,et al.  Regulation of Phototropic Signaling in Arabidopsis via Phosphorylation State Changes in the Phototropin 1-interacting Protein NPH3* , 2007, Journal of Biological Chemistry.

[64]  A. Portis,et al.  A Novel Nucleus-Encoded Chloroplast Protein, PIFI, Is Involved in NAD(P)H Dehydrogenase Complex-Mediated Chlororespiratory Electron Transport in Arabidopsis12[W][OA] , 2007, Plant Physiology.

[65]  Len J. McKenzie,et al.  Chlorophyll fluorescence measures of seagrasses Halophila ovalis and Zostera capricorni reveal differences in response to experimental shading , 2007 .

[66]  A. Parida,et al.  Alterations in photosynthetic pigments, protein and osmotic components in cotton genotypes subjected to short-term drought stress followed by recovery , 2007, Plant Biotechnology Reports.

[67]  Da-Peng Zhang,et al.  The Mg-chelatase H subunit is an abscisic acid receptor , 2006, Nature.

[68]  S. Turner,et al.  Biomass development and photosynthetic potential of intertidal Zostera capricorni in New Zealand estuaries , 2006 .

[69]  Hidetoshi Shimodaira,et al.  Pvclust: an R package for assessing the uncertainty in hierarchical clustering , 2006, Bioinform..

[70]  A. Krieger-Liszkay,et al.  Tocopherol is the scavenger of singlet oxygen produced by the triplet states of chlorophyll in the PSII reaction centre. , 2006, Journal of experimental botany.

[71]  G. Mauromicale,et al.  Chlorophyll fluorescence and chlorophyll content in field-grown potato as affected by nitrogen supply, genotype, and plant age , 2006, Photosynthetica.

[72]  Xing Wang Deng,et al.  COP1 - from plant photomorphogenesis to mammalian tumorigenesis. , 2005, Trends in cell biology.

[73]  P. Ralph,et al.  Rapid light curves: A powerful tool to assess photosynthetic activity , 2005 .

[74]  R. Peterson,et al.  Control of cytochrome b6f at low and high light intensity and cyclic electron transport in leaves. , 2005, Biochimica et biophysica acta.

[75]  F. Rolland,et al.  Sugar sensing and signalling networks in plants. , 2005, Biochemical Society transactions.

[76]  J. Garin,et al.  New Subunits NDH-M, -N, and -O, Encoded by Nuclear Genes, Are Essential for Plastid Ndh Complex Functioning in Higher Plantsw⃞ , 2005, The Plant Cell Online.

[77]  A. Schwarz Contribution of photosynthetic gains during tidal emersion to production of Zostera capricorni in a North Island, New Zealand estuary , 2004 .

[78]  Alison M. Smith,et al.  The breakdown of starch in leaves. , 2004, The New phytologist.

[79]  Len J. McKenzie,et al.  Flood related loss and recovery of intertidal seagrass meadows in southern Queensland, Australia , 2004 .

[80]  J. Rochaix,et al.  Tab2 is a novel conserved RNA binding protein required for translation of the chloroplast psaB mRNA , 2003, The EMBO journal.

[81]  S. Laubinger,et al.  The SPA1-like proteins SPA3 and SPA4 repress photomorphogenesis in the light. , 2003, The Plant journal : for cell and molecular biology.

[82]  I. Adamska,et al.  Light Stress-Induced One-Helix Protein of the Chlorophyll a/b-Binding Family Associated with Photosystem I1 , 2003, Plant Physiology.

[83]  Nicolae Moise,et al.  Early light-induced proteins protect Arabidopsis from photooxidative stress , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[84]  Peter Westhoff,et al.  The HCF136 protein is essential for assembly of the photosystem II reaction center in Arabidopsis thaliana , 2002, FEBS letters.

[85]  T. G. Owens,et al.  Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[86]  P. Ralph,et al.  Operation of the xanthophyll cycle in the seagrass Zostera marina in response to variable irradiance , 2002 .

[87]  K. Apel,et al.  FLU: A negative regulator of chlorophyll biosynthesis in Arabidopsis thaliana , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[88]  Stefan Jansson,et al.  Acclimation of Arabidopsis thaliana to the light environment: the existence of separate low light and high light responses , 2001, Planta.

[89]  T. Roitsch,et al.  Regulation of source/sink relations by cytokinins , 2000, Plant Growth Regulation.

[90]  U. Lagercrantz,et al.  Rapid evolution of the family of CONSTANS LIKE genes in plants. , 2000, Molecular biology and evolution.

[91]  S. Merchant,et al.  Assembly of chloroplast cytochromes b and c. , 2000, Biochimie.

[92]  A. Thompson,et al.  Abscisic acid biosynthesis in tomato: regulation of zeaxanthin epoxidase and 9-cis-epoxycarotenoid dioxygenase mRNAs by light/dark cycles, water stress and abscisic acid , 2000, Plant Molecular Biology.

[93]  A. Oppenheim,et al.  The Thylakoid FtsH Protease Plays a Role in the Light-Induced Turnover of the Photosystem II D1 Protein , 2000, Plant Cell.

[94]  R. Coles,et al.  Flood and cyclone related loss, and partial recovery, of more than 1000 km2 of seagrass in Hervey Bay, Queensland, Australia , 1995 .

[95]  T. Holton,et al.  Genetics and Biochemistry of Anthocyanin Biosynthesis. , 1995, The Plant cell.

[96]  W. Dennison,et al.  Physiological and morphological responses of the seagrass Zostera capricorni Aschers, to light intensity , 1994 .

[97]  Robert J. Orth,et al.  Assessing Water Quality with Submersed Aquatic Vegetation , 1993 .

[98]  N. Packer,et al.  Chloroplast development and the synthesis of chlorophyll and protochlorophyllide in Zostera transferred to darkness , 1985, Planta.

[99]  N. Boardman Comparative photosynthesis of sun and shade plants. , 1977 .

[100]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[101]  Ana Giraldo Ospina,et al.  Responses of four Indo-West Pacific seagrass species to shading. , 2012, Marine pollution bulletin.

[102]  F. Short,et al.  Leaf reddening in seagrasses , 2010 .

[103]  P. Ralph,et al.  Photosynthesis and Metabolism in Seagrasses at the Cellular Level , 2007 .

[104]  S. K. Fyfe,et al.  Hyperspectral studies of New South Wales seagrasses with particular emphasis on the detection of light stress in Eelgrass Zostera capricorni , 2004 .

[105]  Feng Chen,et al.  Stability of lutein under various storage conditions , 1997 .

[106]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[107]  C. Rose,et al.  Induced Photomorphogenesis by an Altered R : FR Light Ratio in Axenic Ruppia maritima L. , 1994 .

[108]  Trevor Platt,et al.  Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton , 1980 .

[109]  E. Lewis,et al.  The practical salinity scale 1978 and its antecedents , 1980 .