Nonlinear optical potassium niobate nanocrystals as harmonic markers: the role of precursors and stoichiometry in hydrothermal synthesis.

Nanocrystals of alkaline niobates are currently being discussed for various applications because of their diverse and remarkable properties. Although the growth of bulk niobate crystals is well established, little is known about respective nanocrystals and the optical properties of niobates below 100 nm. A systematic view of the hydrothermal synthesis of potassium niobate with respect to the precursor species reveals the sensitive dependence of the resulting crystalline phases and sizes on the educt modifications. With a variation of stoichiometry of the procedure, the product modification and crystallite size can be changed. By means of second harmonic generation, nanocrystalline potassium niobate offers the possibility for use as an optical marker in high resolution nonlinear microscopy. Redispersed particles show a significant second harmonic generation signal throughout the visible spectral range.

[1]  Amit Kumar,et al.  Emergent Low‐Symmetry Phases and Large Property Enhancements in Ferroelectric KNbO3 Bulk Crystals , 2017, Advanced materials.

[2]  Deming Liu,et al.  Optimal Sensitizer Concentration in Single Upconversion Nanocrystals. , 2017, Nano letters.

[3]  Z. Kis,et al.  Nonlinear Diffuse fs-Pulse Reflectometry of Harmonic Upconversion Nanoparticles , 2017 .

[4]  J. Ko,et al.  Possible origin of stabilized monoclinic structure of KNbO3 nanomaterials at room temperature , 2016 .

[5]  S. Chakraborty,et al.  Optimization of Synthesis Conditions of Monoclinic Potassium Niobate (KNbO3) and its Effect on Morphology , 2016 .

[6]  Tymish Y. Ohulchanskyy,et al.  Light upconverting core-shell nanostructures: nanophotonic control for emerging applications. , 2015, Chemical Society reviews.

[7]  L. Bonacina,et al.  Harmonic nanoparticles: noncentrosymmetric metal oxides for nonlinear optics , 2015 .

[8]  Liyan Wu,et al.  Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials , 2013, Nature.

[9]  Jiaguo Yu,et al.  Photocatalytic water splitting for hydrogen generation on cubic, orthorhombic, and tetragonal KNbO3 microcubes. , 2013, Nanoscale.

[10]  Thomas Pertsch,et al.  Second-harmonic generation of single BaTiO3 nanoparticles down to 22 nm diameter. , 2013, ACS nano.

[11]  Sang‐Woo Kim,et al.  Synthesis of monoclinic potassium niobate nanowires that are stable at room temperature. , 2013, Journal of the American Chemical Society.

[12]  K. Buse,et al.  Spontaneous polarization in ultrasmall lithium niobate nanocrystals revealed by second harmonic generation , 2012 .

[13]  K. Reichmann,et al.  Weak-relaxor behaviour in Bi/Yb-doped KNbO3 ceramics , 2011 .

[14]  A. Radenović,et al.  Nonlinear optical response in single alkaline niobate nanowires. , 2011, Nano letters.

[15]  Y. Koo,et al.  Possible role of hydroxyl group on local structure and phase transition of KNbO3 and KTaO3 nanocrystals , 2010 .

[16]  Periklis Pantazis,et al.  Second harmonic generating (SHG) nanoprobes for in vivo imaging , 2010, Proceedings of the National Academy of Sciences.

[17]  Demetri Psaltis,et al.  Second harmonic generation from nanocrystals under linearly and circularly polarized excitations. , 2010, Optics express.

[18]  G. Goh,et al.  Hydrothermal synthesis of sodium potassium niobate solid solutions at 200 °C , 2010 .

[19]  Y. Zhai,et al.  An alternative approach of solid-state reaction to prepare nanocrystalline KNbO3 , 2010 .

[20]  Jinhua Ye,et al.  Building Niobate Nanoparticles with Hexaniobate Lindqvist Ions , 2010 .

[21]  N. Setter,et al.  Low-symmetry phases in ferroelectric nanowires. , 2010, Nano letters.

[22]  T. Grande,et al.  Hydrothermal synthesis and characterization of KNbO3nanorods , 2009 .

[23]  Tao Yu,et al.  Enhanced Photocatalytic Water Splitting Properties of KNbO3 Nanowires Synthesized through Hydrothermal Method , 2008 .

[24]  R. Parra,et al.  Synthesis of KNbO3 nanostructures by a microwave assisted hydrothermal method , 2008 .

[25]  C. Ni,et al.  Size dependency of nanocrystalline TiO2 on its optical property and photocatalytic reactivity exemplified by 2-chlorophenol , 2006 .

[26]  Colleen S. Frazer,et al.  Solid-state Structures and Solution Behavior of Alkali Salts of the $$[\hbox{Nb}_{6}\hbox{O}_{19}]^{8-}$$ Lindqvist Ion , 2006 .

[27]  N. Setter,et al.  Growth of single-crystalline KNbO3 nanostructures. , 2006, The journal of physical chemistry. B.

[28]  A. Cabrera,et al.  Raman study of phase transitions in KNbO3 , 2005 .

[29]  Y. Hakuta,et al.  Hydrothermal synthesis of potassium niobate photocatalysts under subcritical and supercritical water conditions , 2004 .

[30]  S. Haile,et al.  Hydrothermal synthesis of KNbO_3 and NaNbO_3 powders , 2003 .

[31]  Yueh-Lu Wang,et al.  Glycothermal preparation of potassium niobate ceramic particles under supercritical conditions , 2002 .

[32]  Q. Feng,et al.  Manganese oxide porous crystals , 1999 .

[33]  T. Kondo,et al.  Redetemination of the absolute scale of the second-order nonlinear optical coefficients , 1994, Proceedings of 5th European Quantum Electronics Conference.

[34]  Juan Rodríguez-Carvajal,et al.  Recent advances in magnetic structure determination by neutron powder diffraction , 1993 .

[35]  I. Biaggio,et al.  Refractive indices of orthorhombic KNbO 3 . I. Dispersion and temperature dependence , 1992 .

[36]  J. Jehng,et al.  Niobium oxide solution chemistry , 1991 .

[37]  P. M. Raccah,et al.  Anomalous scattering and asymmetrical line shapes in Raman spectra of orthorhombic KNbO3 , 1976 .

[38]  A. Hewat,et al.  Cubic-tetragonal-orthorhombic-rhombohedral ferroelectric transitions in perovskite potassium niobate: neutron powder profile refinement of the structures , 1973 .

[39]  M. Capizzi,et al.  Optical Gap of Strontium Titanate (Deviation from Urbach Tail Behavior) , 1970 .

[40]  H. Kohlschütter,et al.  E. Wiberg: Lehrbuch der anorganischen Chemie (begründet von A. F. Holleman), 57.–70. Auflage. Walter de Gruyter & Co., Berlin 1964. 766 Seiten. Preis: DM 32,—. , 1964 .

[41]  A. Reisman,et al.  Preparation of Pure Potassium Metaniobate , 1956 .

[42]  G. Shirane,et al.  Phase Transitions in Ferroelectric KNbO 3 , 1954 .

[43]  J. P. Remeika,et al.  Dielectric Properties of Sodium and Potassium Niobates , 1951 .

[44]  V. Lamer,et al.  Theory, Production and Mechanism of Formation of Monodispersed Hydrosols , 1950 .

[45]  B. Matthias New Ferroelectric Crystals , 1949 .

[46]  J. G. Solé,et al.  FAST TRACK COMMUNICATION: Multicolour second harmonic generation by strontium barium niobate nanoparticles , 2009 .

[47]  M. Sacks,et al.  Synthesis of Potassium Niobate from Metal Alkoxides , 1991 .

[48]  F. Auzel,et al.  Upconversion processes in coupled ion systems , 1990 .

[49]  F. Schulte,et al.  The Modifications of Niobium Pentoxide , 1966 .