Parameterization of stabilizing controllers over commutative rings with application to multidimensional systems
暂无分享,去创建一个
[1] E. Kunz. Introduction to commutative algebra and algebraic geometry , 1984 .
[2] Dante C. Youla,et al. Modern Wiener-Hopf Design of Optimal Controllers. Part I , 1976 .
[3] Zhiping Lin,et al. Feedback stabilization of MIMO 3-D linear systems , 1999, IEEE Trans. Autom. Control..
[4] Venkat Anantharam. On stabilization and the existence of coprime factorizations , 1985 .
[5] Virendra Sule,et al. Corrigendum: Feedback Stabilization over Commutative rings: The Matrix Case , 1998 .
[6] Vijay Raman,et al. A necessary and sufficient condition for feedback stabilization in a factorial ring , 1984 .
[7] Tsit Yuen Lam,et al. Serre's Conjecture , 1978 .
[8] Zhiping Lin,et al. Feedback Stabilizability of MIMO n-D Linear Systems , 1998, Multidimens. Syst. Signal Process..
[9] Virendra Sule,et al. Feedback Stabilization Over Commutative Rings: The Matrix Case , 1994 .
[10] Xiaocang Lin,et al. A discussion on performance value versus performance order , 2000, IEEE Trans. Autom. Control..
[11] M. Vidyasagar,et al. Algebraic and topological aspects of feedback stabilization , 1980 .
[12] Virendra Sule,et al. Algebraic geometric aspects of feedback stabilization , 1992 .
[13] Michael Francis Atiyah,et al. Introduction to commutative algebra , 1969 .
[14] Shin-Ju Chen,et al. Robustness analysis of uncertain linear singular systems with output feedback control , 1999, IEEE Trans. Autom. Control..
[15] M. Vidyasagar. Control System Synthesis : A Factorization Approach , 1988 .
[16] Kenichi Abe,et al. Feedback Stabilization over Commutative Rings: Further Study of the Coordinate-Free Approach , 2001, SIAM J. Control. Optim..
[17] C. Desoer,et al. Feedback system design: The fractional representation approach to analysis and synthesis , 1979, 1979 18th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.