Parameterization of stabilizing controllers over commutative rings with application to multidimensional systems

The objective of this paper is to present a parameterization method of all stabilizing controllers of the given plant even in the case where there do not exist right-/left-coprime factorizations. The coordinate-free approach is employed to present it. The parameterization is applied to the multidimensional systems with structural stability.

[1]  E. Kunz Introduction to commutative algebra and algebraic geometry , 1984 .

[2]  Dante C. Youla,et al.  Modern Wiener-Hopf Design of Optimal Controllers. Part I , 1976 .

[3]  Zhiping Lin,et al.  Feedback stabilization of MIMO 3-D linear systems , 1999, IEEE Trans. Autom. Control..

[4]  Venkat Anantharam On stabilization and the existence of coprime factorizations , 1985 .

[5]  Virendra Sule,et al.  Corrigendum: Feedback Stabilization over Commutative rings: The Matrix Case , 1998 .

[6]  Vijay Raman,et al.  A necessary and sufficient condition for feedback stabilization in a factorial ring , 1984 .

[7]  Tsit Yuen Lam,et al.  Serre's Conjecture , 1978 .

[8]  Zhiping Lin,et al.  Feedback Stabilizability of MIMO n-D Linear Systems , 1998, Multidimens. Syst. Signal Process..

[9]  Virendra Sule,et al.  Feedback Stabilization Over Commutative Rings: The Matrix Case , 1994 .

[10]  Xiaocang Lin,et al.  A discussion on performance value versus performance order , 2000, IEEE Trans. Autom. Control..

[11]  M. Vidyasagar,et al.  Algebraic and topological aspects of feedback stabilization , 1980 .

[12]  Virendra Sule,et al.  Algebraic geometric aspects of feedback stabilization , 1992 .

[13]  Michael Francis Atiyah,et al.  Introduction to commutative algebra , 1969 .

[14]  Shin-Ju Chen,et al.  Robustness analysis of uncertain linear singular systems with output feedback control , 1999, IEEE Trans. Autom. Control..

[15]  M. Vidyasagar Control System Synthesis : A Factorization Approach , 1988 .

[16]  Kenichi Abe,et al.  Feedback Stabilization over Commutative Rings: Further Study of the Coordinate-Free Approach , 2001, SIAM J. Control. Optim..

[17]  C. Desoer,et al.  Feedback system design: The fractional representation approach to analysis and synthesis , 1979, 1979 18th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.