Upper mantle anisotropy: A preliminary model

Seismic anisotropy in the upper mantle can be explained by crystallographic mineral alignment achieved through dislocation motion. The physical mechanism of mineral alignment requires upper mantle shear flow which reorients and aligns minerals by dislocation glide and climb governed by the dominant glide system of each mineral. The dominant glide systems are assumed to be [100](0l0) for olivine and [001](100) for the pyroxenes. These yield a predominantly orthorhombic fabric with the olivine [100] and the pyroxene [001] axes aligned in the upper mantle flow direction and the olivine [010] and the pyroxene [100] axes aligned normal to the upper mantle flow plane. These glide systems have a threshold temperature of enhanced mobility of 1100–1200 K, which yields a solid-state, thermally defined lithosphere-asthenosphere boundary in an olivine-pyroxene mantle consistent with recent seismic determinations of the thickness of the lithosphere. Mantle anisotropy due to mineral alignment is then actively maintained below this boundary (asthenosphere and mesosphere) and is a fossil state above this boundary (lithosphere). We use the dominant glide systems to establish the crystallographic orientation of olivine and pyroxene in calculating the maximum seismic anisotropy of two petrologic models (pyrolite and piclogite) for the upper mantle by an extrapolation of single-crystal, anisotropic mineral elastic properties to a depth of 400 km. The real-earth seismic anisotropy will be bound by the limits of maximum anisotropy from perfect mineral alignment and minimum anisotropy (isotropy) from random mineral alignment. The seismic anisotropy of the upper 220 km is best represented by the pyrolite model, which reduces to quasi-hexagonal symmetry with the unique axis in the direction of mantle flow. The Lehmann discontinuity is conjectured to be due to a change in composition from pyrolite to piclogite and therefore may represent a change in anisotropy. The piclogite model has orthorhombic symmetry distinctly different from that of the pyrolite. The piclogite anisotropy model can appear quasi-isotropic, when measured by transverse isotropy parameterization, if the mantle flow is mainly horizontal with a horizontal shear plane (that is, the shear flow gradient duH /dR dominates).

[1]  Don L. Anderson Surface wave tomography , 1984 .

[2]  S. Karato,et al.  Preferred Orientation Development of Dynamically Recrystallized Olivine during High Temperature Creep , 1985, The Journal of Geology.

[3]  W. Durham,et al.  Plastic flow of oriented single crystals of olivine: 1. Mechanical data , 1977 .

[4]  H. G. Avélallemant Experimental deformation of diopside and websterite , 1978 .

[5]  Don L. Anderson,et al.  The upper mantle transition region - Eclogite , 1979 .

[6]  W. Durham,et al.  Plastic flow of oriented single crystals of olivine: 2. Observations and interpretations of the dislocation structures , 1977 .

[7]  Y. Guéguen,et al.  High attenuation and the low-velocity zone , 1973 .

[8]  B. Evans,et al.  The temperature variation of hardness of olivine and its implication for polycrystalline yield stress , 1979 .

[9]  Anthony Kelly,et al.  Crystallography and crystal defects , 1970 .

[10]  B. Hobbs,et al.  The simulation of fabric development in plastic deformation and its application to quartzite: The model , 1978 .

[11]  L. M. Hirsch,et al.  Electrical conductivity of olivine during high‐temperature creep , 1986 .

[12]  Stuart Crampin,et al.  A review of wave motion in anisotropic and cracked elastic-media , 1981 .

[13]  M. Ando ScS POLARIZATION ANISOTROPY AROUND THE PACIFIC OCEAN , 1984 .

[14]  Don L. Anderson,et al.  The deep structure of continents , 1979 .

[15]  K. C. Nielsen,et al.  High-temperature flow of wet polycrystalline enstatite , 1978 .

[16]  E. Parmentier,et al.  Flexure and thickening of the lithosphere at the East Pacific Rise , 1986 .

[17]  J. Jonas,et al.  Recovery and Recrystallization during High Temperature Deformation , 1975 .

[18]  M. Darot,et al.  Dislocations in olivine indented at low temperatures , 1981 .

[19]  Don L. Anderson,et al.  Chemical Composition and Evolution of the Mantle , 1982 .

[20]  A. Nicolas,et al.  Velocity anisotropy in a mantle peridotite from the Ivrea Zone: Application to upper mantle anisotropy , 1974 .

[21]  M. Darot,et al.  Upper mantle plasticity from laboratory experiments , 1982 .

[22]  S. Crampin,et al.  Seismic anisotropy - the state of the art , 1984 .

[23]  B. Mitchell,et al.  Surface wave dispersion, regionalized velocity models, and anisotropy of the Pacific crust and upper mantle , 1980 .

[24]  S. Kirby Rheology of the lithosphere , 1983 .

[25]  Don L. Anderson,et al.  Lateral heterogeneity and azimuthal anisotropy of the upper mantle: Love and Rayleigh waves 100–250 s , 1985 .

[26]  Don L. Anderson,et al.  Anisotropic models of the upper mantle , 1984 .

[27]  H. C. Heard,et al.  Chapter 4: Deformation of Rocks at 500° to 800° C. , 1960 .

[28]  C. Young Dislocations in the deformation of olivine , 1969 .

[29]  J. Blacic,et al.  Deformation of single‐crystal clinopyroxenes: 2. Dislocation‐controlled flow processes in Hedenbergite , 1983 .

[30]  Frank D. Stacey,et al.  A thermal model of the earth , 1977 .

[31]  D. Zeuch On the inter-relationship between grain size sensitive creep and dynamic recrystallization of olivine , 1983 .

[32]  D. Anderson,et al.  A model of dislocation-controlled rheology for the mantle , 1981, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[33]  S. Kirby,et al.  Mechanical twinning in diopside Ca(Mg,Fe)Si2O6: Structural mechanism and associated crystal defects , 1977 .

[34]  Don L. Anderson,et al.  Chemical stratification of the mantle , 1979 .

[35]  B. Evans,et al.  Stress and temperature in the bending lithosphere as constrained by experimental rock mechanics , 1979 .

[36]  J. Blacic,et al.  Deformation of single‐crystal clinopyroxenes: 1. Mechanical twinning in diopside and hedenbergite , 1982 .

[37]  Y. Guéguen Dislocations in mantle peeidotite nodules , 1977 .

[38]  P. Houtte,et al.  Plastic anisotropy and texture development in calcite polycrystals , 1986 .

[39]  J. G. Caldwell,et al.  Dependence of the thickness of the elastic oceanic lithosphere on age , 1979 .

[40]  H. H. Hess,et al.  Seismic Anisotropy of the Uppermost Mantle under Oceans , 1964, Nature.

[41]  Donald W. Forsyth The Early Structural Evolution and Anisotropy of the Oceanic Upper Mantle , 1975 .

[42]  A. Nicolas,et al.  Crystalline plasticity and solid state flow in metamorphic rocks , 1976 .

[43]  M. Steckler,et al.  Observations of flexure and the state of stress in the oceanic lithosphere , 1980 .

[44]  D. L. Anderson,et al.  Dislocations and Nonelastic Processes in the Mantle , 1980 .

[45]  Mineo Kumazawa,et al.  Elastic moduli, pressure derivatives, and temperature derivatives of single‐crystal olivine and single‐crystal forsterite , 1969 .

[46]  G. Lister A vorticity equation for lattice reorientation during plastic deformation , 1982 .

[47]  I. Kawasaki Azimuthally anisotropic model of the oceanic upper mantle , 1986 .

[48]  F. J. Humphreys,et al.  Large strain deformation studies using polycrystalline magnesium as a rock analogue. Part II: dynamic recrystallisation mechanisms at high temperatures , 1985 .

[49]  S. Kirby,et al.  Deformation of clinopyroxenite: Evidence for a transition in flow mechanisms and semibrittle behavior , 1984 .

[50]  A. Nicolas,et al.  Textures and Fabrics of Upper-Mantle Peridotites as Illustrated by Xenoliths from Basalts , 1975 .

[51]  Don L. Anderson,et al.  Mineralogy and composition of the upper mantle , 1984 .

[52]  A. L. Frisillo,et al.  Measurement of single‐crystal elastic constants of bronzite as a function of pressure and temperature , 1972 .

[53]  A. Kelly,et al.  Change of shape due to dislocation climb , 1969 .

[54]  Stephen J. Finch,et al.  Elastic properties from acoustic and volume compression experiments , 1981 .

[55]  C. Raleigh,et al.  Slip and the clinoenstatite transformation as competing rate processes in enstatite , 1971 .

[56]  W. F. Brace,et al.  Limits on lithospheric stress imposed by laboratory experiments , 1980 .

[57]  Don L. Anderson,et al.  The Earth as a Planet: Paradigms and Paradoxes , 1984, Science.

[58]  H. A. Lallemant Mechanisms of preferred orientations of olivine in tectonite peridotite , 1975 .

[59]  D. Weidner,et al.  Elasticity of diopside , 1979 .

[60]  D. Anderson,et al.  Hotspots, basalts, and the evolution of the mantle. , 1981, Science.

[61]  C. Raleigh Glide Mechanisms in Experimentally Deformed Minerals , 1965, Science.

[62]  D. L. Anderson,et al.  Preliminary reference earth model , 1981 .

[63]  P. Houtte 11 – Development of Textures by Slip and Twinning , 1985 .

[64]  I. Kawasaki,et al.  Azimuthal anisotropy of surface waves and the possible type of the seismic anisotropy due to preferred orientation of olivine in the uppermost mantle beneath the Pacific Ocean. , 1984 .

[65]  Y. Guéguen,et al.  Decorated dislocations in forsterite , 1979 .

[66]  F. Boudier,et al.  Mechanisms of flow in naturally and experimentally deformed peridotites , 1973 .

[67]  A. Ringwood Composition and petrology of the earth's mantle , 1975 .

[68]  C. Raleigh Mechanisms of plastic deformation of olivine , 1968 .

[69]  D. L. Anderson,et al.  Measurements of mantle wave velocities and inversion for lateral heterogeneities and anisotropy: 3. Inversion , 1986 .

[70]  N. Carter,et al.  High Temperature Flow of Dunite and Peridotite , 1970 .

[71]  S. Crampin,et al.  The Propagation of Surface Waves in Anisotropic Media , 1971 .

[72]  E. V. Artyushkov On the origin of the seismic anisotropy of the lithosphere , 1984 .

[73]  N. Christensen,et al.  Pyroxene orientation within the upper mantle , 1982 .

[74]  D. Zeuch,et al.  Experimental deformation of a synthetic dunite at high temperature and pressure. I. Mechanical behavior, optical microstructure and deformation mechanism , 1984 .

[75]  N. Christensen,et al.  The magnitude, symmetry and origin of upper mantle anisotropy based on fabric analyses of ultramafic tectonites , 1984 .

[76]  Y. Fukao Evidence from core-reflected shear waves for anisotropy in the Earth's mantle , 1984, Nature.

[77]  Don L. Anderson,et al.  Elastic wave propagation in layered anisotropic media , 1961 .

[78]  Don L. Anderson,et al.  Composition of the upper mantle: Geophysical tests of two petrological models , 1984 .

[79]  J. Doukhan,et al.  Transmission electron microscope study of dislocations in orthopyroxene (Mg, Fe)2Si2O6 , 1985 .

[80]  S. Kirby Tectonic stresses in the lithosphere: constraints provided by the experimental deformation of rocks. , 1980 .

[81]  C. Raleigh,et al.  Mechanical twinning in naturally and experimentally deformed diopside , 1967 .

[82]  E. K. Graham,et al.  The pressure and temperature dependence of the elastic constants of pyrope garnet , 1977 .