Recursive Bayesian electromagnetic refractivity estimation from radar sea clutter

[1] Estimation of the range- and height-dependent index of refraction over the sea surface facilitates prediction of ducted microwave propagation loss. In this paper, refractivity estimation from radar clutter returns is performed using a Markov state space model for microwave propagation. Specifically, the parabolic approximation for numerical solution of the wave equation is used to formulate the refractivity from clutter (RFC) problem within a nonlinear recursive Bayesian state estimation framework. RFC under this nonlinear state space formulation is more efficient than global fitting of refractivity parameters when the total number of range-varying parameters exceeds the number of basis functions required to represent the height-dependent field at a given range. Moreover, the range-recursive nature of the estimator can be easily adapted to situations where the refractivity modeling changes at discrete ranges, such as at a shoreline. A fast range-recursive solution for obtaining range-varying refractivity is achieved by using sequential importance sampling extensions to state estimation techniques, namely, the forward and Viterbi algorithms. Simulation and real data results from radar clutter collected off Wallops Island, Virginia, are presented which demonstrate the ability of this method to produce propagation loss estimates that compare favorably with ground truth refractivity measurements.

[1]  Juergen H. Richter,et al.  High Resolution Tropospheric Radar Sounding , 1969 .

[2]  Amalia E. Barrios,et al.  Estimation of surface‐based duct parameters from surface clutter using a ray trace approach , 2004 .

[3]  Charles W. Therrien,et al.  Discrete Random Signals and Statistical Signal Processing , 1992 .

[4]  J. Krolik,et al.  Theoretical performance limits on tropospheric refractivity estimation using point-to-point microwave measurements , 1999 .

[5]  Petros G. Voulgaris,et al.  On optimal ℓ∞ to ℓ∞ filtering , 1995, Autom..

[6]  Jeffrey L. Krolik,et al.  Estimating tropospheric refractivity parameters from radar sea clutter , 1999, Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics. SPW-HOS '99.

[7]  Steven M. Babin,et al.  Fine-scale measurements of microwave refractivity profiles with helicopter and low-cost rocket probes , 1987 .

[8]  A. Doucet,et al.  Maximum a Posteriori Sequence Estimation Using Monte Carlo Particle Filters , 2001, Annals of the Institute of Statistical Mathematics.

[9]  Jeffrey L. Krolik,et al.  Inversion for refractivity parameters from radar sea clutter , 2003 .

[10]  R. A. Helvey Radiosonde errors and spurious surface-based ducts , 1983 .

[11]  Jerry L. Eaves,et al.  Introduction to Radar , 1987 .

[12]  Peter Gerstoft,et al.  Refractivity estimation using multiple elevation angles , 2003 .

[13]  G. D. Dockery Modeling electromagnetic wave propagation in the troposphere using the parabolic equation , 1988 .

[14]  M. Skolnik,et al.  Introduction to Radar Systems , 2021, Advances in Adaptive Radar Detection and Range Estimation.

[15]  Jeffrey L. Krolik,et al.  Refractivity estimation from radar clutter by sequential importance sampling with a Markov model for microwave propagation , 2001, 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221).

[16]  Earl E. Gossard,et al.  Radar observation of clear air and clouds , 1983 .

[17]  A.H. Haddad,et al.  Applied optimal estimation , 1976, Proceedings of the IEEE.

[18]  L. T. Rogers Effects of the variability of atmospheric refractivity on propagation estimates , 1996 .

[19]  D. Dockery,et al.  An improved impedance-boundary algorithm for Fourier split-step solutions of the parabolic wave equation , 1996 .