Multi-dimensional electromagnetic modeling and inversion with application to near-surface earth investigations

Electrical conductivity of the earth provides information about porosity, water saturation, salinity, clay content, and organic matter that cannot be duplicated by other geophysical methods of investigation. However, there is a complex relationship between conductivity structure and the geophysical data measured at the Earth's surface. In various fields of investigation, interpreting geophysical responses with a locally one-dimensional (1-D) approximation to earth structure often yields useful results, especially if constrained to avoid artifacts not demanded by the data. However, in many instances, the locally 1-D assumption breaks down, and the lateral variations in structure must be included explicitly in a quantitative model. In this paper, we discuss the state of the art in modeling and inversion of 1-D, 2-D, and 3-D earth conductivity structures. Pertinent issues include capabilities and limitations of the various common field measurement systems, methods to predict the geophysical response, and incremental response sensitivity, to earth structure, in addition to techniques for iteratively estimating an earth model that maximizes resolution without sacrificing model stability. Examples are shown from applications to groundwater resource evaluation, archeology, precision agriculture, contaminant distribution mapping, and vadose zone hydrology. Electrical and electromagnetic data sets in precision agriculture can be enormous and difficult to treat easily in multi-dimensional inversion. Higher dimensionality analysis is, perhaps, best suited for subsets of the data where lateral variation is most extreme or the data simply cannot be fit using 1-D models. One of the most useful new techniques for interpreting precision agriculture datasets may be that termed 1.5-D inversion, wherein layer resistivities and depths of local 1-D models are laterally constrained with respect to neighboring values or a large-scale average structure.

[1]  Oszkar Biro,et al.  Finite-element analysis of controlled-source electromagnetic induction using Coulomb-gauged potentials , 2001 .

[2]  R. Barker,et al.  Practical techniques for 3D resistivity surveys and data inversion1 , 1996 .

[3]  Heikki Soininen,et al.  Detecting organic chemical contaminants by spectral‐induced polarization method in glacial till environment , 1992 .

[4]  Jie Zhang,et al.  3-D resistivity forward modeling and inversion using conjugate gradients , 1995 .

[5]  B. Siemon,et al.  Examples of 1-D inversion of multifrequency HEM data from 3-D resistivity distributions , 1998 .

[6]  G. Newman,et al.  Frequency‐domain modelling of airborne electromagnetic responses using staggered finite differences , 1995 .

[7]  Philip E. Wannamaker,et al.  Advances in three-dimensional magnetotelluric modeling using integral equations , 1991 .

[8]  D. H. Griffiths,et al.  Two-dimensional resistivity imaging and modelling in areas of complex geology , 1993 .

[9]  R. Barker,et al.  Rapid least-squared inversion of apparent resisitivity pseudosections by a quasi-Newton method , 1996 .

[10]  T. Ormos,et al.  A new procedure for the interpretation of VES data: 1.5-D simultaneous inversion method , 1999 .

[11]  R. L. Mackie,et al.  Three-dimensional magnetotelluric modelling and inversion , 1989, Proc. IEEE.

[12]  Jan M. H. Hendrickx,et al.  Inversion of Soil Conductivity Profiles from Electromagnetic Induction Measurements , 2002 .

[13]  Douglas W. Oldenburg,et al.  Inversion of 3-D DC resistivity data using an approximate inverse mapping , 1994 .

[14]  S. Ward,et al.  Induced polarization : applications and case histories , 1990 .

[15]  Frank Morrison,et al.  Sharp boundary inversion of 2D magnetotelluric data , 1999 .

[16]  K. Spitzer A 3-D FINITE-DIFFERENCE ALGORITHM FOR DC RESISTIVITY MODELLING USING CONJUGATE GRADIENT METHODS , 1995 .

[17]  G. W. Hohmann,et al.  Magnetotelluric models of the Roosevelt hot springs thermal area, Utah. , 1980 .

[18]  Walter L. Anderson,et al.  Computer program; numerical integration of related Hankel transforms of orders O and 1 by adaptive digital filtering , 1979 .

[19]  AN INVESTIGATION OF CROSS-BOREHOLE GROUND PENETRATING RADAR MEASUREMENTS FOR CHARACTERIZING THE 2D MOISTURE CONTENT DISTRIBUTION IN THE VADOSE ZONE , 1999 .

[20]  J. Schön,et al.  CONTAMINATION INDICATIONS DERIVED FROM ELECTRICAL PROPERTIES IN THE LOW FREQUENCY RANGE1 , 1993 .

[21]  Enrique Gómez-Treviño A simple sensitivity analysis of time-domain and frequency-domain electromagnetic measurements , 1987 .

[22]  J. T. Smith Conservative modeling of 3-D electromagnetic fields, Part I: Properties and error analysis , 1996 .

[23]  S. K. Runcorn,et al.  Interpretation theory in applied geophysics , 1965 .

[24]  Y. Sasaki Full 3-D inversion of electromagnetic data on PC , 2001 .

[25]  Richard George,et al.  Critical Factors Affecting the Adoption of Airborne Geophysics for Management of Dryland Salinity , 2002 .

[26]  Louise Pellerin,et al.  21. An Integrated Approach for Hydrogeophysical Investigations: New Technologies and a Case History , 2005 .

[27]  Hansruedi Maurer,et al.  Optimized and robust experimental design: a non-linear application to EM sounding , 1998 .

[28]  W. Rodi A Technique for Improving the Accuracy of Finite Element Solutions for Magnetotelluric Data , 1976 .

[29]  G. W. Hohmann,et al.  A finite-difference, time-domain solution for three-dimensional electromagnetic modeling , 1993 .

[30]  I. J. Won,et al.  Conductivity and Susceptibility Mapping Using Broadband Electromagnetic Sensors , 2000 .

[31]  Heikki Soininen,et al.  Laboratory technique for measurement of spectral induced polarization response of soil samples , 1995 .

[32]  William Rodi,et al.  Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion , 2001 .

[33]  R. Mackie,et al.  Three-dimensional magnetotelluric inversion using conjugate gradients , 1993 .

[34]  A. Binley,et al.  Vadose zone flow model parameterisation using cross-borehole radar and resistivity imaging , 2001 .

[35]  E. Auken,et al.  Mutually Constrained Inversion (MCI) of Electrical and Electromagnetic Data , 2001 .

[36]  Brian R. Spies,et al.  Three-Dimensional Electromagnetics , 1999 .

[37]  P. Wolfgram,et al.  Conductivity-depth transform of GEOTEM data , 1995 .

[38]  S. Ward Geotechnical and environmental geophysics , 1990 .

[39]  G. W. Hohmann Three-Dimensional Induced Polarization and Electromagnetic Modeling , 1975 .

[40]  Roger F. Harrington,et al.  Field computation by moment methods , 1968 .

[41]  David C. Nobes,et al.  Troubled waters: Environmental applications of electrical and electromagnetic methods , 1996 .

[42]  G. Newman,et al.  Three-dimensional magnetotelluric inversion using non-linear conjugate gradients , 2000 .

[43]  H. Johansen,et al.  FAST HANKEL TRANSFORMS , 1979 .

[44]  Alan D. Chave,et al.  Electromagnetic induction by a finite electric dipole source over a 2-D earth , 1993 .

[45]  William Rodi,et al.  3-D magnetotelluric inversion for resource exploration , 2001 .

[46]  E. Auken,et al.  Lateral constrained inversion (LCI) of profile oriented data - The resistivity case , 2000 .

[47]  T. Dahlin,et al.  Resolution of 2D Wenner resistivity imaging as assessed by numerical modelling , 1998 .

[48]  Gerald W. Hohmann,et al.  Magnetotelluric responses of three-dimensional bodies in layered earths , 1982 .

[49]  H. Vanhala Comparison between geological models based on resistivity data and resistivity-IP data , 1999 .

[50]  B. Siemon Improved and new resistivity-depth profiles for helicopter electromagnetic data , 2001 .

[51]  Douglas W. Oldenburg,et al.  Practical strategies for the solution of large‐scale electromagnetic inverse problems , 1994 .

[52]  Reduction of inversion errors in helicopter EM data using auxiliary information , 1998 .

[53]  Philip E. Wannamaker,et al.  Calculating the two‐dimensional magnetotelluric Jacobian in finite elements using reciprocity , 1996 .

[54]  A. Binley,et al.  Seasonal variation of moisture content in unsaturated sandstone inferred from borehole radar and resistivity profiles. , 2002 .

[55]  D. H. Griffiths,et al.  TWO DIMENSIONAL RESISTIVITY MAPPING WITH A COMPUTER-CONTROLLED ARRAY , 1990 .

[56]  R. Parker Geophysical Inverse Theory , 1994 .

[57]  T. Dahlin,et al.  Quasi-3D resistivity imaging - mapping of three dimensional structures using two dimensional DC resistivity techniques , 1997 .

[58]  B. Jacobsen,et al.  Rapid inversion of 2-D geoelectrical data by multichannel deconvolution , 2001 .

[59]  Douglas W. Oldenburg,et al.  3-D inversion of induced polarization data3-D Inversion of IP Data , 2000 .

[60]  Gregory A. Newman,et al.  Three‐dimensional induction logging problems, Part I: An integral equation solution and model comparisons , 2002 .

[61]  I. J. Won,et al.  GEM‐2: A New Multifrequency Electromagnetic Sensor , 1996 .

[62]  Advanced inversion methods for airborne electromagnetic exploration , 2000 .

[63]  Douglas W. Oldenburg,et al.  Applied geophysical inversion , 1994 .

[64]  S. Constable,et al.  Occam's inversion to generate smooth, two-dimensional models from magnetotelluric data , 1990 .

[65]  Douglas LaBrecque,et al.  Difference Inversion of ERT Data: a Fast Inversion Method for 3-D In Situ Monitoring , 2001 .

[66]  Three-Dimensional Inversion of Electromagnetic Data , 1993 .

[67]  M. Zhdanov,et al.  Two-dimensional magnetotelluric inversion of blocky geoelectrical structures , 2002 .

[68]  Gregory A. Newman,et al.  3D inversion of a scalar radio magnetotelluric field data set , 2003 .

[69]  D. LaBrecque,et al.  Occam's inversion of 3-D electrical resistivity tomography. Three-dimensional Electromagnetics , 1999 .

[70]  G. Street,et al.  Interpretation of Geophysical Data for Salt Hazard Identification and Catchment Management in Southwest Western Australia , 2002 .

[71]  J. T. Smith Conservative modeling of 3-D electromagnetic fields, Part II: Biconjugate gradient solution and an accelerator , 1996 .

[72]  Michael S. Zhdanov,et al.  Fast and stable two-dimensional inversion of magnetotelluric data , 1997 .

[73]  K. F. Riley,et al.  Mathematical Methods for Physics and Engineering , 1998 .

[74]  J. D. Mcneill Use of Electromagnetic Methods for Groundwater Studies , 1990 .

[75]  Yutaka Sasaki,et al.  3-D resistivity inversion using the finite-element method , 1994 .

[76]  Philip E. Wannamaker,et al.  A stable finite element solution for two-dimensional magnetotelluric modelling , 1987 .

[77]  Niels B. Christensen,et al.  Optimized fast Hankel transform filters , 1990 .

[78]  R. Parker,et al.  Occam's inversion; a practical algorithm for generating smooth models from electromagnetic sounding data , 1987 .

[79]  W. Daily,et al.  The effects of noise on Occam's inversion of resistivity tomography data , 1996 .

[80]  Esben Auken,et al.  Layered and laterally constrained 2D inversion of resistivity data , 2004 .

[81]  Philip E. Wannamaker,et al.  Tensor CSAMT survey over the Sulphur Springs thermal area, Valles Caldera, New Mexico, U.S.A., Part II: Implications for CSAMT methodology , 1997 .

[82]  Gerald W. Hohmann,et al.  A rapid inversion technique for transient electromagnetic soundings , 1989 .

[83]  M. H. Loke,et al.  Constrained Time-Lapse Resistivity Imaging Inversion , 2001 .

[84]  L. Pellerin Applications Of Electrical And Electromagnetic Methods For Environmental And Geotechnical Investigations , 2002 .

[85]  M. Descloîtres,et al.  Audiomagnetotelluric prospecting for groundwater in the Baril coastal area, Piton de la Fournaise Volcano, Reunion Island , 1997 .

[86]  G. W. Hohmann,et al.  4. Electromagnetic Theory for Geophysical Applications , 1987 .

[87]  B. Sh. Singer,et al.  Method for solution of Maxwell's equations in non-uniform media , 1995 .

[88]  R. Harrington Time-Harmonic Electromagnetic Fields , 1961 .

[89]  E. Haber,et al.  Fast Simulation of 3D Electromagnetic Problems Using Potentials , 2000 .

[90]  Perry A. Eaton,et al.  3D ELECTROMAGNETIC INVERSION USING INTEGRAL EQUATIONS1 , 1989 .

[91]  P. Wannamaker Tensor CSAMT survey over the Sulphur Springs thermal area, Valles Caldera, New Mexico, U.S.A., Part I: Implications for structure of the western caldera , 1997 .

[92]  D. Oldenburg,et al.  Inversion of induced polarization data , 1994 .

[93]  D. Oldenburg,et al.  Inversion of geophysical data using an approximate inverse mapping , 1991 .

[94]  P. Wannamaker 22. Affordable Magnetotellurics: Interpretation in Natural Environments , 1999 .

[95]  Torleif Dahlin,et al.  Measuring techniques in induced polarisation imaging , 2002 .

[96]  K. Sørensen Pulled Array Continuous Electrical Profiling , 1996 .

[97]  W. Menke Geophysical data analysis : discrete inverse theory , 1984 .

[98]  J. Shadid,et al.  Three‐dimensional wideband electromagnetic modeling on massively parallel computers , 1996 .

[99]  Hansruedi Maurer,et al.  Design strategies for electromagnetic geophysical surveys , 2000 .

[100]  P. Wannamaker,et al.  Fluid generation and pathways beneath an active compressional orogen, the New Zealand Southern Alps, inferred from magnetotelluric data , 2002 .

[101]  M. A. Pérez-Flores,et al.  Imaging low-frequency and dc electromagnetic fields using a simple linear approximation , 2001 .

[102]  Louise Pellerin,et al.  Tools for electromagnetic investigation of the shallow subsurface , 1997 .

[103]  Lee Slater,et al.  Controls on induced polarization in sandy unconsolidated sediments and application to aquifer characterization , 2003 .

[104]  Yadvinder Malhi,et al.  Energy and water dynamics of a central Amazonian rain forest , 2002 .

[105]  J. T. Smith,et al.  Rapid inversion of two‐ and three‐dimensional magnetotelluric data , 1991 .

[106]  Andreas Weller,et al.  Three-dimensional inversion of induced polarization data from simulated waste , 1999 .

[107]  Chapter 15 Three-dimensional monitoring of vadose zone infiltration using electrical resistivity tomography and cross-borehole ground-penetrating radar , 2002 .

[108]  K. Vozoff,et al.  8. The Magnetotelluric Method , 1991 .

[109]  Bülent Tezkan,et al.  Two-dimensional radiomagnetotelluric investigation of industrial and domestic waste sites in Germany , 2000 .

[110]  D. Oldenburg,et al.  Subspace inversion of electromagnetic data: application to mid‐ocean‐ridge exploration , 1995 .

[111]  K. Zonge,et al.  Extremely fast IP used to delineate buried landfills , 1999 .

[112]  Sources of calibration errors in helicopter EM data , 1998 .

[113]  G. W. Hohmann,et al.  An investigation of finite-element modeling for electrical and electromagnetic data in three dimensions , 1981 .

[114]  Hansruedi Maurer,et al.  Real-time experimental design applied to high-resolution direct-current resistivity surveys , 2001, Optics + Photonics.

[115]  Bülent Tezkan,et al.  A Review Of Environmental Applications Of Quasi-Stationary Electromagnetic Techniques , 1999 .

[116]  P. Weidelt,et al.  Inversion of two-dimensional conductivity structures , 1975 .

[117]  David L. Wright,et al.  A VETEM SURVEY OF A FORMER MUNITIONS FOUNDRY SITE AT THE DENVER FEDERAL CENTER , 2000 .

[118]  M. Dabas,et al.  Recent developments in shallow‐depth electrical and electrostatic prospecting using mobile arrays , 1998 .

[119]  D. Fitterman,et al.  Helicopter EM mapping of saltwater intrusion in Everglades National Park, Florida , 1998 .

[120]  R. Dmowska,et al.  International Geophysics Series , 1992 .

[121]  David E. Boerner Controlled source electromagnetic deep sounding: Theory, results and correlation with natural source results , 1992 .

[122]  D. Oldenburg,et al.  Inversion of electromagnetic data: An overview of new techniques , 1990 .

[123]  A. Becker,et al.  Two-dimensional mapping of sea-ice keels with airborne electromagnetics , 1990 .

[124]  Michael S. Zhdanov,et al.  Contraction integral equation method in three‐dimensional electromagnetic modeling , 2002 .

[125]  D. Fitterman,et al.  Results of time-domain electromagnetic soundings in Everglades National Park, Florida , 1999 .

[126]  Olivier Banton,et al.  Mapping Field-Scale Physical Properties of Soil with Electrical Resistivity , 1997 .

[127]  D. Jackson Interpretation of Inaccurate, Insufficient and Inconsistent Data , 1972 .