Sensitivity analysis of the Lanczos reduction

For a given real n n matrix A and initial vectors v 1 and w 1 , we examine the sensitivity of the tridiagonal matrix T and the biorthogonal sets of vectors of the Lanczos reduction to small changes in A, v 1 and w 1. We also consider the sensitivity of the developing Krylov subspaces.

[1]  Roland W. Freund,et al.  Efficient linear circuit analysis by Pade´ approximation via the Lanczos process , 1994, EURO-DAC '94.

[2]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[3]  C. Lanczos An iteration method for the solution of the eigenvalue problem of linear differential and integral operators , 1950 .

[4]  C. Lanczos Solution of Systems of Linear Equations by Minimized Iterations1 , 1952 .

[5]  M. Saunders,et al.  Solution of Sparse Indefinite Systems of Linear Equations , 1975 .

[6]  Gene H. Golub,et al.  Matrix Computations, Third Edition , 1996 .

[7]  Xiao-Wen Chang,et al.  Perturbation analysis of some matrix factorizations , 1997 .

[8]  R. Freund,et al.  QMR: a quasi-minimal residual method for non-Hermitian linear systems , 1991 .

[9]  Roland W. Freund,et al.  Small-Signal Circuit Analysis and Sensitivity Computations with the PVL Algorithm , 1996 .

[10]  Nicholas J. Higham,et al.  INVERSE PROBLEMS NEWSLETTER , 1991 .

[11]  W. Kahan,et al.  The Rotation of Eigenvectors by a Perturbation. III , 1970 .

[12]  W. Arnoldi The principle of minimized iterations in the solution of the matrix eigenvalue problem , 1951 .

[13]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .

[14]  S. Godunov,et al.  Condition number of the Krylov bases and subspaces , 1996 .

[15]  Nicholas J. Highham A survey of condition number estimation for triangular matrices , 1987 .

[16]  B N Parlett,et al.  On the Forward Instability of the QR Transformation , 1988 .

[17]  A. Sluis Condition numbers and equilibration of matrices , 1969 .

[18]  P. Dooren,et al.  Asymptotic Waveform Evaluation via a Lanczos Method , 1994 .