Resonant-Wavelength Control of Nanocavities by Nanometer-Scaled Adjustment of Two-Dimensional Photonic Crystal Slab Structures

In this letter, we experimentally demonstrate resonant-wavelength control of a series of 16 nanocavities in a two-dimensional photonic crystal slab structure by nanometer-order variation of the lattice constants and air-holes sizes. The cavities show a linear dependence on these parameters, a 1-nm increase of lattice constant or air-hole size leading to 4.2-nm increase or 1.56-nm decrease of the resonant wavelength, respectively. These experimental results are in good agreement with the finite-difference time-domain calculations and have a small standard deviation of wavelength (~1 nm) between samples on a single chip. These results will stimulate development in areas such as ultrasmall and multichannel filters, sensors, and switches.