SelInv---An Algorithm for Selected Inversion of a Sparse Symmetric Matrix

We describe an efficient implementation of an algorithm for computing selected elements of a general sparse symmetric matrix A that can be decomposed as A = LDLT, where L is lower triangular and D is diagonal. Our implementation, which is called SelInv, is built on top of an efficient supernodal left-looking LDLT factorization of A. We discuss how computational efficiency can be gained by making use of a relative index array to handle indirect addressing. We report the performance of SelInv on a collection of sparse matrices of various sizes and nonzero structures. We also demonstrate how SelInv can be used in electronic structure calculations.

[1]  J. Gilbert Predicting Structure in Sparse Matrix Computations , 1994 .

[2]  E Weinan,et al.  Multipole representation of the Fermi operator with application to the electronic structure analysis of metallic systems , 2008, 0812.4352.

[3]  Chao Yang,et al.  ARPACK users' guide - solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods , 1998, Software, environments, tools.

[4]  R. Martin,et al.  Electronic Structure: Basic Theory and Practical Methods , 2004 .

[5]  Eleftherios N. Economou,et al.  Green's functions in quantum physics , 1979 .

[6]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[7]  J. Bunch,et al.  Direct Methods for Solving Symmetric Indefinite Systems of Linear Equations , 1971 .

[8]  A. George Nested Dissection of a Regular Finite Element Mesh , 1973 .

[9]  Alan George,et al.  Computer Solution of Large Sparse Positive Definite , 1981 .

[10]  Y. Saad,et al.  Finite-difference-pseudopotential method: Electronic structure calculations without a basis. , 1994, Physical review letters.

[11]  J. Gilbert,et al.  Sparse Partial Pivoting in Time Proportional to Arithmetic Operations , 1986 .

[12]  Cleve B. Moler,et al.  Numerical computing with MATLAB , 2004 .

[13]  Abhishek Kumar Gupta,et al.  Wsmp: watson sparse matrix package , 2000 .

[14]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[15]  Patrick Amestoy,et al.  A Fully Asynchronous Multifrontal Solver Using Distributed Dynamic Scheduling , 2001, SIAM J. Matrix Anal. Appl..

[16]  Eric Darve,et al.  A hybrid method for the parallel computation of Green's functions , 2009, J. Comput. Phys..

[17]  J. Douglas Faires,et al.  Numerical Analysis , 1981 .

[18]  J. Pasciak,et al.  Computer solution of large sparse positive definite systems , 1982 .

[19]  Richard M. Martin Electronic Structure: Frontmatter , 2004 .

[20]  Joseph W. H. Liu The role of elimination trees in sparse factorization , 1990 .

[21]  T. Arias,et al.  Iterative minimization techniques for ab initio total energy calculations: molecular dynamics and co , 1992 .

[22]  John G. Lewis,et al.  Accurate Symmetric Indefinite Linear Equation Solvers , 1999, SIAM J. Matrix Anal. Appl..

[23]  J. Bunch,et al.  Some stable methods for calculating inertia and solving symmetric linear systems , 1977 .

[24]  W. F. Tinney,et al.  On computing certain elements of the inverse of a sparse matrix , 1975, Commun. ACM.

[25]  E. Weinan,et al.  Fast algorithm for extracting the diagonal of the inverse matrix with application to the electronic structure analysis of metallic systems , 2009 .

[26]  Joseph W. H. Liu,et al.  Modification of the minimum-degree algorithm by multiple elimination , 1985, TOMS.

[27]  Jack J. Dongarra,et al.  A Portable Programming Interface for Performance Evaluation on Modern Processors , 2000, Int. J. High Perform. Comput. Appl..

[28]  Timothy A. Davis,et al.  The university of Florida sparse matrix collection , 2011, TOMS.

[29]  Eric Darve,et al.  Computing entries of the inverse of a sparse matrix using the FIND algorithm , 2008, J. Comput. Phys..

[30]  Constantine Bekas,et al.  Computation of Large Invariant Subspaces Using Polynomial Filtered Lanczos Iterations with Applications in Density Functional Theory , 2008, SIAM J. Matrix Anal. Appl..

[31]  Roger Grimes,et al.  The influence of relaxed supernode partitions on the multifrontal method , 1989, TOMS.

[32]  J. Miller Numerical Analysis , 1966, Nature.

[33]  John K. Reid,et al.  The Multifrontal Solution of Indefinite Sparse Symmetric Linear , 1983, TOMS.

[34]  I. Duff,et al.  Direct Methods for Sparse Matrices , 1987 .

[35]  Vipin Kumar,et al.  Highly Scalable Parallel Algorithms for Sparse Matrix Factorization , 1997, IEEE Trans. Parallel Distributed Syst..

[36]  O. Schenk,et al.  ON FAST FACTORIZATION PIVOTING METHODS FOR SPARSE SYMMETRI C INDEFINITE SYSTEMS , 2006 .

[37]  James R. Chelikowsky,et al.  Real-space pseudopotential method for computing the electronic properties of periodic systems , 2004 .

[38]  E Weinan,et al.  A Fast Parallel Algorithm for Selected Inversion of Structured Sparse Matrices with Application to 2D Electronic Structure Calculations , 2010, SIAM J. Sci. Comput..

[39]  Anoop Gupta,et al.  An Efficient Block-Oriented Approach to Parallel Sparse Cholesky Factorization , 1994, SIAM J. Sci. Comput..

[40]  พงศ์ศักดิ์ บินสมประสงค์,et al.  FORMATION OF A SPARSE BUS IMPEDANCE MATRIX AND ITS APPLICATION TO SHORT CIRCUIT STUDY , 1980 .

[41]  Barry W. Peyton,et al.  Block sparse Cholesky algorithms on advanced uniprocessor computers , 1991 .

[42]  Yousef Saad,et al.  Self-consistent-field calculations using Chebyshev-filtered subspace iteration , 2006, J. Comput. Phys..

[43]  Y. Saad,et al.  Polynomial filtered Lanczos iterations with applications in Density Functional Theory , 2005 .

[44]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[45]  Cleve Ashcraft,et al.  SPOOLES: An Object-Oriented Sparse Matrix Library , 1999, PPSC.

[46]  Iain S. Duff,et al.  Users' guide for the Harwell-Boeing sparse matrix collection (Release 1) , 1992 .

[47]  E Program Pole-Based Approximation of the Fermi-Dirac Function , 2009 .