Multiscale materials design of natural exoskeletons : fish armor

Biological materials have developed hierarchical and heterogeneous material nanostructures and microstructures to provide protection against various environmental threats that, in turn, provide bioinspired clues to man-made, protective material designs. In particular, designs of dermal fish armor are a tradeoff between protection and mobility. A comprehensive knowledge base of the materials and mechanical design principles of fish armor has broad applicability to the development of synthetic engineered protective/flexible materials. In this thesis, two fish armor model systems have been investigated by means of structure-property-function relationships, ultimately answering how the armor systems have been designed in response to their environmental threats. The first model system, Polypterus senegalus are descendants of ancient fish and their body is covered by a natural armor consisting of small bony scales. The quadlayered armor scales are composed of ganoine, dentin, isopedine and bone, to protect against predatory biting attacks. First of all, multilayer design principles of P. senegalus scales were understood with respect to penetration resistance by the multiscale experimental and computational study. The quadlayered scales exhibit mechanical gradient within and between material layers and have geometrically corrugated junctions with an undetectable gradation; all of which lead to effective penetration resistance including load-dependent effective material properties, circumferential surface cracking, plastic dissipation in the underlying dentin layer, stress redistribution around the interfaces with suppression of interfacial failure. Secondly, since the outmost ganoine is structurally anisotropic, the roles of anisotropy of ganoine in the entire system have been investigated by combining orientation-dependant indentation and mechanical modeling. The elastic-plastic anisotropy of the ganoine layer enhances the load-dependent penetration resistance of the multilayered armor compared with the isotropic ganoine layer mainly by (i) enhancing the transmission of stress and dissipation to the underlying dentin layer, (ii) lowering the ganoine/dentin interfacial stresses and hence reducing any propensity toward delamination, and (iii) providing discrete structural pathways for cracks to propagate normal to the surface for easy arrest by the underlying dentin layer.

[1]  Robert L. Carroll,et al.  Vertebrate Paleontology and Evolution , 1988 .

[2]  M. Snead,et al.  Biological Organization of Hydroxyapatite Crystallites into a Fibrous Continuum Toughens and Controls Anisotropy in Human Enamel , 2001, Journal of dental research.

[3]  Kenneth S. Vecchio,et al.  Synthetic multifunctional metallic-intermetallic laminate composites , 2005 .

[4]  Zhigang Suo,et al.  Deformation mechanisms in nacre , 2001 .

[5]  Subra Suresh,et al.  Protection mechanisms of the iron-plated armor of a deep-sea hydrothermal vent gastropod , 2010, Proceedings of the National Academy of Sciences.

[6]  Jeffrey A. Walker,et al.  EVOLUTION OF PELVIC REDUCTION IN THREESPINE STICKLEBACK FISH: A TEST OF COMPETING HYPOTHESES , 1993, Evolution; international journal of organic evolution.

[7]  Th Leventouri,et al.  Synthetic and biological hydroxyapatites: crystal structure questions. , 2006, Biomaterials.

[8]  S. Weiner,et al.  Design strategies of sea urchin teeth: structure, composition and micromechanical relations to function. , 1997, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[9]  Christine Ortiz,et al.  Time-dependent nanomechanics of cartilage. , 2011, Biophysical journal.

[10]  F. Huntingford,et al.  Biology of the Three-Spined Stickleback , 2006 .

[11]  Seiichi Mori Divergence in reproductive ecology of the three-spined stickleback,Gasterosteus aculeatus , 1987 .

[12]  Henry Eyring,et al.  The Mechanical Properties of Rat Tail Tendon , 1959, The Journal of general physiology.

[13]  W. Ramberg,et al.  Description of Stress-Strain Curves by Three Parameters , 1943 .

[14]  R. W. Elner,et al.  The mechanics of predation by the shore crab, Carcinus maenas (L.), on the edible mussel, Mytilus edulis L. , 2004, Oecologia.

[15]  H. Rundle,et al.  Speciation in nature : the threespine stickleback model systems , 2002 .

[16]  E. P. Chace A living fossil , 1962 .

[17]  G. M. Taylor Maximum force production: why are crabs so strong? , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[18]  H. Gundersen,et al.  Quantification of connectivity in cancellous bone, with special emphasis on 3-D reconstructions. , 1993, Bone.

[19]  D. Hagen,et al.  Selective predation and the intensity of selection acting upon the lateral plates of threespine sticklebacks , 1973, Heredity.

[20]  P. Bartsch,et al.  The development of the tooth pattern and dentigerous bones in Polypterus senegalus (Cladistia, Actinopterygii). , 2001, Annals of anatomy = Anatomischer Anzeiger : official organ of the Anatomische Gesellschaft.

[21]  J. Webb Gross Morphology and Evolution of the Mechanoreceptive Lateral-Line System in Teleost Fishes (Part 2 of 2) , 1989 .

[22]  P. Fratzl,et al.  Mechanical Function of a Complex Three-dimensional Suture Joining the Bony Elements in the Shell of the Red-eared Slider Turtle , 2009 .

[23]  Geerat J. Vermeij,et al.  Nature: An Economic History , 2004 .

[24]  P. Rüegsegger,et al.  Direct Three‐Dimensional Morphometric Analysis of Human Cancellous Bone: Microstructural Data from Spine, Femur, Iliac Crest, and Calcaneus , 1999, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[25]  M. Bell A Late Miocene Marine Threespine Stickleback, Gasterosteus aculeatus aculeatus, and Its Zoogeographic and Evolutionary Significance , 1977 .

[26]  Michael F. Ashby,et al.  The mechanical efficiency of natural materials , 2004 .

[27]  N. Backström,et al.  Speciation genetics: current status and evolving approaches , 2010, Philosophical Transactions of the Royal Society B: Biological Sciences.

[28]  D. Schluter,et al.  Genetic and developmental basis of evolutionary pelvic reduction in threespine sticklebacks , 2004, Nature.

[29]  Markus J. Buehler,et al.  Molecular nanomechanics of nascent bone: fibrillar toughening by mineralization , 2007 .

[30]  S. Woo,et al.  Measurements of nonhomogeneous, directional mechanical properties of articular cartilage in tension. , 1976, Journal of biomechanics.

[31]  G. Vermeij Evolution and Escalation: An Ecological History of Life , 1987 .

[32]  Francois Barthelat,et al.  Nacre from mollusk shells: a model for high-performance structural materials , 2010, Bioinspiration & biomimetics.

[33]  Yoshiyasu Ito,et al.  A Study on the Surface Shape of Fish Scales , 2002 .

[34]  S. A. Wainwright,et al.  Mechanical Design in Organisms , 2020 .

[35]  M. Vickaryous,et al.  Origin and evolution of the integumentary skeleton in non‐tetrapod vertebrates , 2009, Journal of anatomy.

[36]  P. Fratzl,et al.  Mineralized collagen fibrils: a mechanical model with a staggered arrangement of mineral particles. , 2000, Biophysical journal.

[37]  Helmut Pottmann Architectural Geometry as Design Knowledge , 2010 .

[38]  Subra Suresh,et al.  A new method for estimating residual stresses by instrumented sharp indentation , 1998 .

[39]  Reinhard Pippan,et al.  A further step towards an understanding of size-dependent crystal plasticity: In situ tension experiments of miniaturized single-crystal copper samples , 2008 .

[40]  T. Reimchen INJURIES ON STICKLEBACK FROM ATTACKS BY A TOOTHED PREDATOR (ONCORHYNCHUS) AND IMPLICATIONS FOR THE EVOLUTION OF LATERAL PLATES , 1992, Evolution; international journal of organic evolution.

[41]  P. Bartsch,et al.  Dentition and dentigerous bones in juveniles and adults of Polypterus senegalus (Cladistia, Actinopterygii). , 1998, Annals of anatomy = Anatomischer Anzeiger : official organ of the Anatomische Gesellschaft.

[42]  G. Ortí,et al.  Pelvic Reduction in Threespine Stickleback from Cook Inlet Lakes: Geographical Distribution and Intrapopulation Variation , 1994 .

[43]  W. Tawackoli,et al.  The use of a synthetic oxygen carrier-enriched hydrogel to enhance mesenchymal stem cell-based bone formation in vivo. , 2009, Biomaterials.

[44]  Joanna Aizenberg,et al.  New Nanofabrication Strategies: Inspired by Biomineralization , 2010 .

[45]  S. Foster,et al.  Cannibalism as the cause of an ontogenetic shift in habitat use by fry of the threespine stickleback , 2004, Oecologia.

[46]  G. Pharr,et al.  An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments , 1992 .

[47]  J. Katz,et al.  On the anisotropic elastic properties of hydroxyapatite. , 1971, Journal of biomechanics.

[48]  S. Foster,et al.  The Evolutionary biology of the threespine stickleback , 1995 .

[49]  Y. Qin,et al.  Micro-manufacturing: research, technology outcomes and development issues , 2010 .

[50]  Robert M. Panas,et al.  Nanoscale Morphology and Indentation of Individual Nacre Tablets from the Gastropod Mollusc Trochus Niloticus , 2005 .

[51]  M. Boyce,et al.  Bioinspired Structural Material Exhibiting Post‐Yield Lateral Expansion and Volumetric Energy Dissipation During Tension , 2010 .

[52]  M. Bell Interacting evolutionary constraints in pelvic reduction of threespine sticklebacks, Gasterosteus aculeatus (Pisces, Gasterosteidae) , 1987 .

[53]  George V Lauder,et al.  The C-start escape response of Polypterus senegalus: bilateral muscle activity and variation during stage 1 and 2. , 2002, The Journal of experimental biology.

[54]  Subra Suresh,et al.  DETERMINATION OF ELASTOPLASTIC PROPERTIES BY INSTRUMENTED SHARP INDENTATION , 1999 .

[55]  M. Swain,et al.  Mechanical properties across hypomineralized/hypoplastic enamel of first permanent molar teeth. , 2004, European journal of oral sciences.

[56]  Bretton W. Kent Patterns of coexistence in busyconine whelks , 1983 .

[57]  G. Dietl,et al.  The Fossil Record of Predator-Prey Arms Races: Coevolution and Escalation Hypotheses , 2002 .

[58]  P. Motta,et al.  Comparative analysis of methods for determining bite force in the spiny dogfish Squalus acanthias. , 2004, Journal of experimental zoology. Part A, Comparative experimental biology.

[59]  S. Weiner Transient precursor strategy in mineral formation of bone. , 2006, Bone.

[60]  I. Spears,et al.  A Three-dimensional Finite Element Model of Prismatic Enamel: A Re-appraisal of the Data on the Young's Modulus of Enamel , 1997, Journal of dental research.

[61]  Mary C. Boyce,et al.  Three-dimensional micromechanical modeling of voided polymeric materials , 2002 .

[62]  A. Waas,et al.  Ultrastrong and Stiff Layered Polymer Nanocomposites , 2007, Science.

[63]  Yasuaki Seki,et al.  Biological materials: Structure and mechanical properties , 2008 .

[64]  M. Horton,et al.  Collagen fibrils: nanoscale ropes. , 2007, Biophysical journal.

[65]  J. Shah,et al.  Crimping in rat tail tendon collagen: morphology and transverse mechanical anisotropy , 1983 .

[66]  B. Kristjánsson Rapid Morphological Changes in Threespine Stickleback, Gasterosteus aculeatus, in Freshwater , 2005, Environmental Biology of Fishes.

[67]  Tomasz Arciszewski,et al.  Bio-inspiration: Learning Creative Design Principia , 2006, EG-ICE.

[68]  T. Reimchen PREDATOR HANDLING FAILURES OF LATERAL PLATE MORPHS IN GASTEROSTEUS ACULEATUS: FUNCTIONAL IMPLICATIONS FOR THE ANCESTRAL PLATE CONDITION , 2000 .

[69]  Patrik Schumacher,et al.  Parametricism: A New Global Style for Architecture and Urban Design , 2009 .

[70]  J. Sire Scales in young Polypterus senegalus are elasmoid: new phylogenetic implications. , 1989, The American journal of anatomy.

[71]  Liyun Wang,et al.  Image analyses of two crustacean exoskeletons and implications of the exoskeletal microstructure on the mechanical behavior , 2008 .

[72]  N. Giles The possible role of environmental calcum levels during the evolution of phenotypic diversity in Outer Hebridean populations of the Three-spined stickleback, Gasterosteus aculeatus , 2010 .

[73]  Sheryl Coombs,et al.  Biology of the mechanosensory lateral line in fishes , 1995, Reviews in Fish Biology and Fisheries.

[74]  B. Viswanath,et al.  Mechanical properties and anisotropy in hydroxyapatite single crystals , 2007 .

[75]  D. Shimizu,et al.  Functional significance of the microstructural detail of the primate dentino-enamel junction: a possible example of exaptation. , 2007, Journal of human evolution.

[76]  Christian Peter Klingenberg,et al.  Evolution and development of shape: integrating quantitative approaches , 2010, Nature Reviews Genetics.

[77]  John D. Currey,et al.  The mechanical behaviour of some molluscan hard tissues , 2009 .

[78]  I. Rehman,et al.  Characterization of hydroxyapatite and carbonated apatite by photo acoustic FTIR spectroscopy , 1997, Journal of materials science. Materials in medicine.

[79]  R. L. Caldwell,et al.  Extreme impact and cavitation forces of a biological hammer: strike forces of the peacock mantis shrimp Odontodactylus scyllarus , 2005, Journal of Experimental Biology.

[80]  M. Boyce,et al.  Quantitative microstructural studies of the armor of the marine threespine stickleback (Gasterosteus aculeatus). , 2010, Journal of structural biology.

[81]  K. Kelm,et al.  Hierarchical fibre composite structure and micromechanical properties of phosphatic and calcitic brachiopod shell biomaterials – an overview , 2008, Mineralogical Magazine.

[82]  A. H. Parsons Structure of the Eggshell , 1982 .

[83]  Neri Oxman,et al.  Structuring Materiality: Design Fabrication of Heterogeneous Materials , 2010 .

[84]  J. Sire Light and TEM study of nonregenerated and experimentally regenerated scales of Lepisosteus oculatus (holostei) with particular attention to ganoine formation , 1994, The Anatomical record.

[85]  K. Dill Dominant forces in protein folding. , 1990, Biochemistry.

[86]  R. Ritchie,et al.  On the Mechanistic Origins of Toughness in Bone , 2010 .

[87]  H. Qi,et al.  Effect of mineral content on the nanoindentation properties and nanoscale deformation mechanisms of bovine tibial cortical bone , 2005, Journal of materials science. Materials in medicine.

[88]  M. Zuschin,et al.  Patterns and processes of shell fragmentation in modern and ancient marine environments , 2003 .

[89]  R. Hughes Foraging behaviour of a tropical crab: Ozius verreauxii , 1989, Proceedings of the Royal Society of London. B. Biological Sciences.

[90]  J. J. Hoedeman,et al.  Naturalists' Guide to Fresh-Water Aquarium Fish , 1976 .

[91]  S. Wainwright Stress and Design in Bivalved Mollusc Shell , 1969, Nature.

[92]  S. Herring,et al.  Craniofacial sutures: Morphology, growth, and in vivo masticatory strains , 1999, Journal of morphology.

[93]  Michael F. Ashby,et al.  On the mechanics of balsa and other woods , 1982, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[94]  E. Blout,et al.  Infrared spectroscopy of collagen and collagen‐like polypeptides , 1975, Biopolymers.

[95]  M. Boyce,et al.  Materials design principles of ancient fish armour. , 2008, Nature materials.

[96]  S. Weiner,et al.  Design strategies in mineralized biological materials , 1997 .

[97]  R. Main,et al.  In vivo cranial suture function and suture morphology in the extant fish Polypterus: implications for inferring skull function in living and fossil fish , 2006, Journal of Experimental Biology.

[98]  Miles M. Coburn,et al.  A comparative study of percid scales (Teleostei: Perciformes) , 1992 .

[99]  E. Ritman Micro-computed tomography-current status and developments. , 2004, Annual review of biomedical engineering.

[100]  Jeremy Schmutz,et al.  Adaptive Evolution of Pelvic Reduction in Sticklebacks by Recurrent Deletion of a Pitx1 Enhancer , 2010, Science.

[101]  G. Vermeij Unsuccessful Predation and Evolution , 1982, The American Naturalist.

[102]  K. Bachus,et al.  Determining mineral content variations in bone using backscattered electron imaging. , 1997, Bone.

[103]  Julia R. Greer,et al.  Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients , 2005 .

[104]  E. Ramm,et al.  Structural optimization and form finding of light weight structures , 2001 .

[105]  P. Fratzl,et al.  Microtexture and Chitin/Calcite Orientation Relationship in the Mineralized Exoskeleton of the American Lobster , 2008 .

[106]  K. Chinzei,et al.  Constitutive modelling of brain tissue: experiment and theory. , 1997, Journal of biomechanics.

[107]  Morton B. Brown,et al.  The bone diagnostic instrument II: indentation distance increase. , 2008, The Review of scientific instruments.

[108]  D Vashishth,et al.  Fracture toughness of human bone under tension. , 1995, Journal of biomechanics.

[109]  J. S. Nelson Comparison of the Pectoral and Pelvic Skeletons and of some other Bones and their Phylogenetic Implications in the Aulorhynchidae and Gasterosteidae (Pisces) , 1971 .

[110]  Manuel Elices,et al.  Structural biological materials : design and structure-property relationships , 2000 .

[111]  Jeremy Schmutz,et al.  Widespread Parallel Evolution in Sticklebacks by Repeated Fixation of Ectodysplasin Alleles , 2005, Science.

[112]  C. Tabit,et al.  Functional aspects of Placoid Scales: A review and update , 1992 .

[113]  John H. Long,et al.  The Importance of Body Stiffness in Undulatory Propulsion , 1996 .

[114]  S. Suresh,et al.  Graded Materials for Resistance to Contact Deformation and Damage , 2001, Science.

[115]  M. Moss The Vertebrate Dermis and the Integumental Skeleton , 1972 .

[116]  P. J. Park,et al.  The World's Oldest Fossil Threespine Stickleback Fish , 2009, Copeia.

[117]  O. Marti,et al.  Spatial distribution of calcite and amorphous calcium carbonate in the cuticle of the terrestrial crustaceans Porcellio scaber and Armadillidium vulgare. , 2008, Journal of structural biology.

[118]  C. Rey,et al.  Physico-chemical properties of nanocrystalline apatites: Implications for biominerals and biomaterials , 2007 .

[119]  G W Marshall,et al.  Mechanical properties of human dental enamel on the nanometre scale. , 2001, Archives of oral biology.

[120]  Ludwig J. Gauckler,et al.  Bioinspired Design and Assembly of Platelet Reinforced Polymer Films , 2008, Science.

[121]  D. Schluter,et al.  PARALLEL EVOLUTION BY CORRELATED RESPONSE: LATERAL PLATE REDUCTION IN THREESPINE STICKLEBACK , 2007, Evolution; international journal of organic evolution.

[122]  Liyun Wang,et al.  Mechanics-based analysis of selected features of the exoskeletal microstructure of Popillia japonica , 2009 .

[123]  D. M. Bushnell,et al.  DRAG REDUCTION IN NATURE , 1991 .

[124]  TOR Hildebrand,et al.  Quantification of Bone Microarchitecture with the Structure Model Index. , 1997, Computer methods in biomechanics and biomedical engineering.

[125]  O. Marti,et al.  Ultrastructure and mineral distribution in the tergal cuticle of the terrestrial isopod Titanethes albus. Adaptations to a karst cave biotope. , 2009, Journal of structural biology.

[126]  H. A. Orr,et al.  The genetic theory of adaptation: a brief history , 2005, Nature Reviews Genetics.

[127]  P Zioupos,et al.  Mechanical properties and the hierarchical structure of bone. , 1998, Medical engineering & physics.

[128]  Catherine A. Wilson,et al.  Parallel genetic basis for repeated evolution of armor loss in Alaskan threespine stickleback populations. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[129]  J. Aizenberg,et al.  Skeleton of Euplectella sp.: Structural Hierarchy from the Nanoscale to the Macroscale , 2005, Science.

[130]  Geoffrey E. Lloyd,et al.  Atomic number and crystallographic contrast images with the SEM: a review of backscattered electron techniques , 1987, Mineralogical Magazine.

[131]  Steve Weiner,et al.  Materials design in biology , 2000 .

[132]  K. Liem,et al.  Air Ventilation by Recoil Aspiration in Polypterid Fishes , 1989, Science.

[133]  J. Tanaka,et al.  FT-IR study for hydroxyapatite/collagen nanocomposite cross-linked by glutaraldehyde. , 2002, Biomaterials.

[134]  S A Gansky,et al.  Mechanical properties of the dentinoenamel junction: AFM studies of nanohardness, elastic modulus, and fracture. , 2001, Journal of biomedical materials research.

[135]  G. J. Romanes,et al.  Current Problems of Lower Vertebrate Phylogeny. , 1969 .

[136]  S. Foster,et al.  Armor morphology and reproductive output in threespine stickleback, Gasterosteus aculeatus , 1995, Environmental Biology of Fishes.

[137]  J. Currey The design of mineralised hard tissues for their mechanical functions. , 1999, The Journal of experimental biology.

[138]  R. F. Bunshah,et al.  Fracture Toughness of Human Enamel , 1981, Journal of dental research.

[139]  E. Herre 11. Laws Governing Species Interactions? Encouragement and Caution from Figs and Their Associates , 2000 .

[140]  Ian Mayer,et al.  The Molecular Genetics of Evolutionary Change in Sticklebacks , 2006 .

[141]  Edwin H. Colbert,et al.  Evolution of the Vertebrates , 1955 .

[142]  Franz-Josef Ulm,et al.  Nanogranular origins of the strength of bone. , 2006, Nano letters.

[143]  William D. Callister,et al.  Materials Science and Engineering: An Introduction , 1985 .

[144]  P. Fratzl,et al.  Validation of quantitative backscattered electron imaging for the measurement of mineral density distribution in human bone biopsies. , 1998, Bone.

[145]  Daniel Chateigner,et al.  Mollusc shell microstructures and crystallographic textures , 2000 .

[146]  R. O. Ritchie,et al.  The dentin–enamel junction and the fracture of human teeth , 2005, Nature materials.

[147]  Francois Barthelat,et al.  Merger of structure and material in nacre and bone - Perspectives on de novo biomimetic materials , 2009 .

[148]  D. Adriaens,et al.  Morphology of the jaw system in trichiurids: trade-offs between mouth closing and biting performance , 2008 .

[149]  Brian R. Lawn,et al.  Teeth: Among Nature's Most Durable Biocomposites , 2010 .

[150]  Anurag A. Agrawal,et al.  Phenotypic Plasticity in the Interactions and Evolution of Species , 2001, Science.

[151]  P. Motta,et al.  Scaling of bite force in the blacktip shark Carcharhinus limbatus. , 2006, Zoology.

[152]  S. Gemballa,et al.  From head to tail: The myoseptal system in basal actinopterygians , 2004, Journal of morphology.

[153]  G. Lauder Evolution of the feeding mechanism in primitive actionopterygian fishes: A functional anatomical analysis of Polypterus, Lepisosteus, and Amia , 1980, Journal of morphology.

[154]  R. C. Francis,et al.  Pelvic reduction and its directional asymmetry in threespine sticklebacks from the Cook Inlet region, Alaska , 1985 .

[155]  V. Bels,et al.  Biology of turtles , 2007 .

[156]  P. Motta,et al.  Analysis of the bite force and mechanical design of the feeding mechanism of the durophagous horn shark Heterodontus francisci , 2005, Journal of Experimental Biology.

[157]  R. Spearman The integument : a textbook of skin biology , 1973 .

[158]  J. Postlethwait,et al.  Studies of threespine stickleback developmental evolution: progress and promise , 2006, Genetica.

[159]  S. Gorb,et al.  Local mechanical properties of the head articulation cuticle in the beetle Pachnoda marginata (Coleoptera, Scarabaeidae) , 2006, Journal of Experimental Biology.

[160]  K. Bachus,et al.  The meaning of graylevels in backscattered electron images of bone. , 1993, Journal of biomedical materials research.

[161]  Ioannis V. Yannas,et al.  Tissue and organ regeneration in adults , 2001 .

[162]  T. Hatfield Fluctuating asymmetry and reproductive isolation between two sticklebacks , 1997, Environmental Biology of Fishes.

[163]  G. B. Olson,et al.  Computational Design of Hierarchically Structured Materials , 1997 .

[164]  P. Patwari,et al.  Individual cartilage aggrecan macromolecules and their constituent glycosaminoglycans visualized via atomic force microscopy. , 2003, Journal of structural biology.

[165]  R. Ritchie,et al.  Mechanistic fracture criteria for the failure of human cortical bone , 2003, Nature materials.

[166]  C A Bergstrom,et al.  Fast-start swimming performance and reduction in lateral plate number in threespine stickleback , 2002 .

[167]  K. Katti,et al.  3D finite element modeling of mechanical response in nacre-based hybrid nanocomposites , 2001 .

[168]  R. Mapes,et al.  Sublethal and lethal injuries of Pennsylvanian conulariids from Oklahoma , 1989, Journal of Paleontology.

[169]  J. Sire,et al.  Major discoveries on the dermal skeleton of fossil and Recent polypteriforms: a review , 2001 .

[170]  Huajian Gao,et al.  Materials become insensitive to flaws at nanoscale: Lessons from nature , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[171]  Parviz Moin,et al.  Direct numerical simulation of turbulent flow over riblets , 1993, Journal of Fluid Mechanics.

[172]  G W Marshall,et al.  Evaluation of a new modulus mapping technique to investigate microstructural features of human teeth. , 2004, Journal of biomechanics.

[173]  P. Anderson,et al.  Feeding mechanics and bite force modelling of the skull of Dunkleosteus terrelli, an ancient apex predator , 2007, Biology Letters.

[174]  Thomas E. Reimchen,et al.  Predator-Induced Cyclical Changes in Lateral Plate Frequencies of Gasterosteus , 1995 .

[175]  G. Lauder,et al.  Passive and Active Flow Control by Swimming Fishes and Mammals , 2006 .

[176]  Jacqueline A. Cutroni,et al.  Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture , 2005, Nature materials.

[177]  Yoseph Bar-Cohen,et al.  Biomimetics—using nature to inspire human innovation , 2006, Bioinspiration & biomimetics.

[178]  R. Østerby,et al.  Distribution of Membrane Thickness Determined By Lineal Analysis , 1978, Journal of microscopy.

[179]  K. Vecchio,et al.  Mechanical properties and structure of Strombus gigas, Tridacna gigas, and Haliotis rufescens sea shells: A comparative study , 2006 .

[180]  Dierk Raabe,et al.  The crustacean exoskeleton as an example of a structurally and mechanically graded biological nanocomposite material , 2005 .

[181]  C. Enwemeka,et al.  Matrix remodeling in healing rabbit Achilles tendon , 1999, Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society.

[182]  S. M. Vamosi Predation sharpens the adaptive peaks: survival trade-offs in sympatric sticklebacks , 2002 .

[183]  E. Azizi,et al.  Morphology and mechanics of myosepta in a swimming salamander (Siren lacertina). , 2002, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[184]  S A Goldstein,et al.  Skeletal repair by in situ formation of the mineral phase of bone. , 1995, Science.

[185]  M. J. Walsh,et al.  Riblets as a Viscous Drag Reduction Technique , 1983 .

[186]  T. McClanahan,et al.  Patterns of preedation on a sea urchin, Echinometra mathaei (de Blainville), on Kenyan coral reefs , 1989 .

[187]  Horacio Dante Espinosa,et al.  An Experimental Investigation of Deformation and Fracture of Nacre–Mother of Pearl , 2007 .

[188]  T. Reimchen Inefficient predators and prey injuries in a population of giant stickleback , 1988 .

[189]  Christian Hellmich,et al.  'Universal' microstructural patterns in cortical and trabecular, extracellular and extravascular bone materials: micromechanics-based prediction of anisotropic elasticity. , 2007, Journal of theoretical biology.

[190]  Steffen H. Reichert,et al.  Reverse engineering nature : design principles for flexible protection inspired by ancient fish armor of Polypteridae , 2010 .

[191]  Sven Gemballa,et al.  Architecture of the integument in lower teleostomes: Functional morphology and evolutionary implications , 2002, Journal of morphology.

[192]  K. Miller,et al.  Constitutive model of brain tissue suitable for finite element analysis of surgical procedures. , 1999, Journal of biomechanics.

[193]  Kerry B. Marchinko PREDATION'S ROLE IN REPEATED PHENOTYPIC AND GENETIC DIVERGENCE OF ARMOR IN THREESPINE STICKLEBACK , 2009, Evolution; international journal of organic evolution.

[194]  Yuh J. Chao,et al.  Nanoscale Structural and Mechanical Characterization of a Natural Nanocomposite Material: The Shell of Red Abalone , 2004 .

[195]  S. Foster UNDERSTANDING THE EVOLUTION OF BEHAVIOR IN THREESPINE STICKLEBACK: THE VALUE OF GEOGRAPHIC VARIATION , 1995 .

[196]  M. Boyce,et al.  Design of multilayer polymeric coatings for indentation resistance , 1995 .

[197]  Benjamin J. F. Bruet,et al.  Multiscale structural and mechanical design of mineralized biocomposites , 2008 .

[198]  Mj Williams Opening of Bivalve Shells by the Mud Crab Scylla Serrata Forskål , 1978 .

[199]  A. Romer EURYPTERID INFLUENCE ON VERTEBRATE HISTORY. , 1933, Science.

[200]  P. Etter,et al.  Rapid SNP Discovery and Genetic Mapping Using Sequenced RAD Markers , 2008, PloS one.

[201]  Desmond Morris,et al.  The Spines of Sticklebacks (Gasterosteus and Pygosteus) as Means of Defence Against Predators (Perca and Esox) , 1956 .

[202]  V. Bucur,et al.  The anisotropy of biological composites studied with ultrasonic technique. , 2006, Ultrasonics.

[203]  M. Westneat,et al.  Evolution of Levers and Linkages in the Feeding Mechanisms of Fishes1 , 2004, Integrative and comparative biology.

[204]  Clément Sanchez,et al.  Biomimetism and bioinspiration as tools for the design of innovative materials and systems , 2005, Nature materials.

[205]  Richard Weinkamer,et al.  Artful interfaces within biological materials , 2011 .

[206]  J. Geller Reproductive responses to shell damage by the gastropod Nucella emarginata (Deshayes) , 1990 .

[207]  S. M. Vamosi The presence of other fish species affects speciation in threespine sticklebacks , 2003 .

[208]  D. Schluter,et al.  Evidence for Ecological Speciation and Its Alternative , 2022 .

[209]  T. Reimchen STRUCTURAL RELATIONSHIPS BETWEEN SPINES AND LATERAL PLATES IN THREESPINE STICKLEBACK (GASTEROSTEUS ACULEATUS) , 1983, Evolution; international journal of organic evolution.

[210]  K. Jandt,et al.  In vitro demineralization/remineralization cycles at human tooth enamel surfaces investigated by AFM and nanoindentation. , 2004, Journal of colloid and interface science.

[211]  Hideki Aoki,et al.  Mechanical properties of sintered hydroxyapatite for prosthetic applications , 1981 .

[212]  F. Fish,et al.  Dolphin swimming–a review , 1991 .

[213]  Horacio Dante Espinosa,et al.  Mechanical properties of nacre constituents and their impact on mechanical performance , 2006 .

[214]  M. Boyce,et al.  Micromechanics, macromechanics and constitutive modeling of the elasto-viscoplastic deformation of rubber-toughened glassy polymers , 2007 .

[215]  I C Howard,et al.  The Effects of Enamel Anisotropy on the Distribution of Stress in a Tooth , 1993, Journal of dental research.

[216]  P. Nosil,et al.  VARIABLE PREDATION REGIMES PREDICT THE EVOLUTION OF SEXUAL DIMORPHISM IN A POPULATION OF THREESPINE STICKLEBACK , 2004, Evolution; international journal of organic evolution.

[217]  M. Noor,et al.  Speciation genetics: evolving approaches , 2006, Nature Reviews Genetics.

[218]  P. Hansma,et al.  The bone diagnostic instrument III: testing mouse femora. , 2009, The Review of scientific instruments.

[219]  George M. Pharr,et al.  On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation , 1992 .

[220]  T. Reimchen Trout foraging failures and the evolution of body size in stick-leback , 1991 .

[221]  S. Mann,et al.  Microstructure, mechanical, and biomimetic properties of fish scales from Pagrus major. , 2003, Journal of structural biology.

[222]  M. Mattern Molecular phylogeny of the Gasterosteidae: the importance of using multiple genes. , 2004, Molecular phylogenetics and evolution.

[223]  Mary C. Boyce,et al.  Anisotropic design of a multilayered biological exoskeleton , 2009 .

[224]  Himadri S. Gupta,et al.  Nanoscale deformation mechanisms in bone. , 2005, Nano letters.

[225]  A. Palazoglu,et al.  Nanoscale heterogeneity promotes energy dissipation in bone. , 2007, Nature materials.

[226]  S. Foster,et al.  An overview of life-history variation in female threespine stickleback , 2008 .

[227]  J. Sire From Ganoid To Elasmoid Scales in the Actinopterygian Fishes , 1989 .

[228]  D. Schluter,et al.  The genetic architecture of divergence between threespine stickleback species , 2001, Nature.

[229]  H. Magalhaes An Ecological Study of Snails of the Genus Busycon at Beaufort, North Carolina , 1948 .

[230]  James C. Weaver,et al.  Micromechanical properties of biological silica in skeletons of deep-sea sponges , 2006 .

[231]  Victor Smetacek,et al.  Architecture and material properties of diatom shells provide effective mechanical protection , 2003, Nature.

[232]  C. Peichel,et al.  Lateral line diversity among ecologically divergent threespine stickleback populations , 2010, Journal of Experimental Biology.

[233]  J. Videler,et al.  Radular teeth as models for the improvement of industrial cutting devices , 1999 .

[234]  R. Hughes,et al.  Criteria for prey size-selection in molluscivorous crabs with contrasting claw morphologies , 1995 .

[235]  N. Dominy,et al.  Mechanical Defences to Herbivory , 2000 .

[236]  A. Raji,et al.  Preliminary studies on food and feeding habits of Polypterus endlicheri and Polypterus senegalus in Lake Chad , 2004 .

[237]  M. Ishiyama,et al.  Tooth enamel and enameloid in actinopterygian fish , 2009 .

[238]  Ralph Müller,et al.  Nondestructive micro-computed tomography for biological imaging and quantification of scaffold-bone interaction in vivo. , 2007, Biomaterials.

[239]  D. Schluter,et al.  Natural Selection on a Major Armor Gene in Threespine Stickleback , 2008, Science.

[240]  P. Motta,et al.  Feeding Morphology, Diet, and Ecomorphological Relationships among Five Caribbean Labrids (Teleostei, Labridae) , 1998 .

[241]  E. T Spine deficiency and polymorphism in a population of Gasterosteus aculeatus : an adaptation to predators ? , 2007 .

[242]  M. Moss,et al.  THE BIOLOGY OF ACELLULAR TELEOST BONE * , 1963, Annals of the New York Academy of Sciences.