Influence Maximization on Social Graphs: A Survey

Influence Maximization (IM), which selects a set of <inline-formula><tex-math notation="LaTeX">$k$</tex-math> <alternatives><inline-graphic xlink:href="li-ieq1-2807843.gif"/></alternatives></inline-formula> users (called seed set) from a social network to maximize the expected number of influenced users (called influence spread), is a key algorithmic problem in social influence analysis. Due to its immense application potential and enormous technical challenges, IM has been extensively studied in the past decade. In this paper, we survey and synthesize a wide spectrum of existing studies on IM from an <italic>algorithmic perspective</italic>, with a special focus on the following key aspects: (1) a review of well-accepted diffusion models that capture the information diffusion process and build the foundation of the IM problem, (2) a fine-grained taxonomy to classify existing IM algorithms based on their design objectives, (3) a rigorous theoretical comparison of existing IM algorithms, and (4) a comprehensive study on the applications of IM techniques in combining with novel context features of social networks such as topic, location, and time. Based on this analysis, we then outline the key challenges and research directions to expand the boundary of IM research.

[1]  Dong Xu,et al.  Influence Spreading Path and Its Application to the Time Constrained Social Influence Maximization Problem and Beyond , 2014, IEEE Transactions on Knowledge and Data Engineering.

[2]  Shishir Bharathi,et al.  Competitive Influence Maximization in Social Networks , 2007, WINE.

[3]  Wei Chen,et al.  Efficient influence maximization in social networks , 2009, KDD.

[4]  Yasir Mehmood,et al.  Spheres of Influence for More Effective Viral Marketing , 2016, SIGMOD Conference.

[5]  Mark S. Granovetter Threshold Models of Collective Behavior , 1978, American Journal of Sociology.

[6]  Hui Li,et al.  GetReal : Towards Realistic Selection of Influence Maximization Strategies in Competitive Networks , 2014 .

[7]  Laks V. S. Lakshmanan,et al.  Information and Influence Propagation in Social Networks , 2013, Synthesis Lectures on Data Management.

[8]  Shaojie Tang,et al.  Adaptive Influence Maximization in Dynamic Social Networks , 2015, IEEE/ACM Transactions on Networking.

[9]  Jimeng Sun,et al.  Confluence: conformity influence in large social networks , 2013, KDD.

[10]  Jacob Goldenberg,et al.  Talk of the Network: A Complex Systems Look at the Underlying Process of Word-of-Mouth , 2001 .

[11]  Gao Cong,et al.  Simulated Annealing Based Influence Maximization in Social Networks , 2011, AAAI.

[12]  Li Guo,et al.  On the Upper Bounds of Spread for Greedy Algorithms in Social Network Influence Maximization , 2015, IEEE Transactions on Knowledge and Data Engineering.

[13]  Huiyuan Zhang,et al.  Recent Advances in Information Diffusion and Influence Maximization of Complex Social Networks , 2014 .

[14]  M. L. Fisher,et al.  An analysis of approximations for maximizing submodular set functions—I , 1978, Math. Program..

[15]  Sujay Sanghavi,et al.  Learning the graph of epidemic cascades , 2012, SIGMETRICS '12.

[16]  Wei Chen,et al.  Scalable influence maximization for prevalent viral marketing in large-scale social networks , 2010, KDD.

[17]  Jie Tang,et al.  Influence Maximization in Dynamic Social Networks , 2013, 2013 IEEE 13th International Conference on Data Mining.

[18]  Éva Tardos,et al.  Influential Nodes in a Diffusion Model for Social Networks , 2005, ICALP.

[19]  Masahiro Kimura,et al.  Tractable Models for Information Diffusion in Social Networks , 2006, PKDD.

[20]  Laks V. S. Lakshmanan,et al.  Learning influence probabilities in social networks , 2010, WSDM '10.

[21]  Andreas Krause,et al.  Cost-effective outbreak detection in networks , 2007, KDD '07.

[22]  Xiaodong Chen,et al.  On Influential Nodes Tracking in Dynamic Social Networks , 2015, SDM.

[23]  Christian Borgs,et al.  Maximizing Social Influence in Nearly Optimal Time , 2012, SODA.

[24]  Éva Tardos,et al.  Maximizing the Spread of Influence through a Social Network , 2015, Theory Comput..

[25]  Kian-Lee Tan,et al.  Real-Time Influence Maximization on Dynamic Social Streams , 2017, Proc. VLDB Endow..

[26]  Shourya Roy,et al.  Holistic Influence Maximization: Combining Scalability and Efficiency with Opinion-Aware Models , 2016, SIGMOD Conference.

[27]  Jimeng Sun,et al.  A Survey of Models and Algorithms for Social Influence Analysis , 2011, Social Network Data Analytics.

[28]  Kyomin Jung,et al.  IRIE: Scalable and Robust Influence Maximization in Social Networks , 2011, 2012 IEEE 12th International Conference on Data Mining.

[29]  Wei Chen,et al.  IMRank: influence maximization via finding self-consistent ranking , 2014, SIGIR.

[30]  Gerard de Melo,et al.  DynaDiffuse: A Dynamic Diffusion Model for Continuous Time Constrained Influence Maximization , 2015, AAAI.

[31]  T. Schelling Micromotives and Macrobehavior , 1978 .

[32]  David Kempe,et al.  Robust Influence Maximization , 2016, KDD.

[33]  Aristides Gionis,et al.  Opinion Maximization in Social Networks , 2013, SDM.

[34]  Leslie G. Valiant,et al.  The Complexity of Enumeration and Reliability Problems , 1979, SIAM J. Comput..

[35]  Takuya Akiba,et al.  Fast and Accurate Influence Maximization on Large Networks with Pruned Monte-Carlo Simulations , 2014, AAAI.

[36]  Thang N. Dinh,et al.  Cost-aware Targeted Viral Marketing in billion-scale networks , 2016, IEEE INFOCOM 2016 - The 35th Annual IEEE International Conference on Computer Communications.

[37]  Wonyeol Lee,et al.  CT-IC: Continuously Activated and Time-Restricted Independent Cascade Model for Viral Marketing , 2012, 2012 IEEE 12th International Conference on Data Mining.

[38]  W. O. Kermack,et al.  A contribution to the mathematical theory of epidemics , 1927 .

[39]  Eyal Even-Dar,et al.  A note on maximizing the spread of influence in social networks , 2007, Inf. Process. Lett..

[40]  Yifei Yuan,et al.  Scalable Influence Maximization in Social Networks under the Linear Threshold Model , 2010, 2010 IEEE International Conference on Data Mining.

[41]  Xuemin Lin,et al.  Bring Order into the Samples: A Novel Scalable Method for Influence Maximization , 2017, IEEE Transactions on Knowledge and Data Engineering.

[42]  Wei Chen,et al.  Real-Time Topic-Aware Influence Maximization Using Preprocessing , 2015, CSoNet.

[43]  Ning Zhang,et al.  Time-Critical Influence Maximization in Social Networks with Time-Delayed Diffusion Process , 2012, AAAI.

[44]  P. Santhi Thilagam,et al.  Diffusion models and approaches for influence maximization in social networks , 2016, 2016 International Conference on Advances in Computing, Communications and Informatics (ICACCI).

[45]  Philip S. Yu,et al.  On Influential Node Discovery in Dynamic Social Networks , 2012, SDM.

[46]  Nicolas Vayatis,et al.  Anytime Influence Bounds and the Explosive Behavior of Continuous-Time Diffusion Networks , 2015, NIPS.

[47]  Carlos Guestrin,et al.  A Note on the Budgeted Maximization of Submodular Functions , 2005 .

[48]  Dong Xu,et al.  Time Constrained Influence Maximization in Social Networks , 2012, 2012 IEEE 12th International Conference on Data Mining.

[49]  Laks V. S. Lakshmanan,et al.  Refutations on "Debunking the Myths of Influence Maximization: An In-Depth Benchmarking Study" , 2017, ArXiv.

[50]  Y. Narahari,et al.  A Shapley Value-Based Approach to Discover Influential Nodes in Social Networks , 2011, IEEE Transactions on Automation Science and Engineering.

[51]  Xuemin Lin,et al.  Efficient Distance-Aware Influence Maximization in Geo-Social Networks , 2017, IEEE Transactions on Knowledge and Data Engineering.

[52]  Nicola Barbieri,et al.  Online Topic-aware Influence Maximization Queries , 2014, EDBT.

[53]  Le Song,et al.  Influence Estimation and Maximization in Continuous-Time Diffusion Networks , 2016, ACM Trans. Inf. Syst..

[54]  Gao Cong,et al.  Influence Maximization in Trajectory Databases , 2017, IEEE Transactions on Knowledge and Data Engineering.

[55]  Deying Li,et al.  Minimum cost seed set for competitive social influence , 2016, IEEE INFOCOM 2016 - The 35th Annual IEEE International Conference on Computer Communications.

[56]  Sourav S. Bhowmick,et al.  CASINO: towards conformity-aware social influence analysis in online social networks , 2011, CIKM '11.

[57]  Takuya Akiba,et al.  Dynamic Influence Analysis in Evolving Networks , 2016, Proc. VLDB Endow..

[58]  Xiaoyong Du,et al.  OCTOPUS: An Online Topic-Aware Influence Analysis System for Social Networks , 2018, 2018 IEEE 34th International Conference on Data Engineering (ICDE).

[59]  Xueqi Cheng,et al.  StaticGreedy: solving the scalability-accuracy dilemma in influence maximization , 2012, CIKM.

[60]  Jinha Kim,et al.  Scalable and parallelizable processing of influence maximization for large-scale social networks? , 2013, 2013 IEEE 29th International Conference on Data Engineering (ICDE).

[61]  Ming-Syan Chen,et al.  Influence Maximization for Complementary Goods: Why Parties Fail to Cooperate? , 2016, CIKM.

[62]  Laks V. S. Lakshmanan,et al.  CELF++: optimizing the greedy algorithm for influence maximization in social networks , 2011, WWW.

[63]  L. Freeman Centrality in social networks conceptual clarification , 1978 .

[64]  Samir Khuller,et al.  The Budgeted Maximum Coverage Problem , 1999, Inf. Process. Lett..

[65]  Kian-Lee Tan,et al.  Discovering Your Selling Points: Personalized Social Influential Tags Exploration , 2017, SIGMOD Conference.

[66]  Shuai Xu,et al.  Location-Based Influence Maximization in Social Networks , 2015, CIKM.

[67]  Arijit Khan,et al.  Towards Time-Discounted Influence Maximization , 2016, CIKM.

[68]  Masahiro Kimura,et al.  Efficient discovery of influential nodes for SIS models in social networks , 2011, Knowledge and Information Systems.

[69]  Xiaokui Xiao,et al.  Influence Maximization in Near-Linear Time: A Martingale Approach , 2015, SIGMOD Conference.

[70]  Mong-Li Lee,et al.  Targeted Influence Maximization in Social Networks , 2016, CIKM.

[71]  Wei Chen,et al.  Influence diffusion dynamics and influence maximization in social networks with friend and foe relationships , 2011, WSDM.

[72]  Mao Ye,et al.  Exploring social influence for recommendation: a generative model approach , 2012, SIGIR '12.

[73]  Yu Wang,et al.  Community-based greedy algorithm for mining top-K influential nodes in mobile social networks , 2010, KDD.

[74]  Laks V. S. Lakshmanan,et al.  From Competition to Complementarity: Comparative Influence Diffusion and Maximization , 2015, Proc. VLDB Endow..

[75]  Shou-De Lin,et al.  A Learning-based Framework to Handle Multi-round Multi-party Influence Maximization on Social Networks , 2015, KDD.

[76]  Xiaokui Xiao,et al.  Influence maximization: near-optimal time complexity meets practical efficiency , 2014, SIGMOD Conference.

[77]  Stefan M. Wild,et al.  Maximizing influence in a competitive social network: a follower's perspective , 2007, ICEC.

[78]  Edith Cohen,et al.  Sketch-based Influence Maximization and Computation: Scaling up with Guarantees , 2014, CIKM.

[79]  Sainyam Galhotra,et al.  Debunking the Myths of Influence Maximization: An In-Depth Benchmarking Study , 2017, SIGMOD Conference.

[80]  Aristides Gionis,et al.  STRIP: stream learning of influence probabilities , 2013, KDD.

[81]  Kian-Lee Tan,et al.  Efficient location-aware influence maximization , 2014, SIGMOD Conference.

[82]  Jimeng Sun,et al.  Social influence analysis in large-scale networks , 2009, KDD.

[83]  P. Clifford,et al.  A model for spatial conflict , 1973 .

[84]  David C. Parkes,et al.  Learnability of Influence in Networks , 2015, NIPS.

[85]  Jinhui Tang,et al.  Online Topic-Aware Influence Maximization , 2015, Proc. VLDB Endow..

[86]  Nicola Barbieri,et al.  Topic-Aware Social Influence Propagation Models , 2012, ICDM.

[87]  Hui Xiong,et al.  Influence Maximization over Large-Scale Social Networks: A Bounded Linear Approach , 2014, CIKM.

[88]  Xuemin Lin,et al.  Distance-aware influence maximization in geo-social network , 2016, 2016 IEEE 32nd International Conference on Data Engineering (ICDE).

[89]  Allan Borodin,et al.  Threshold Models for Competitive Influence in Social Networks , 2010, WINE.

[90]  Aristides Gionis,et al.  Sparsification of influence networks , 2011, KDD.

[91]  L. Dagum,et al.  OpenMP: an industry standard API for shared-memory programming , 1998 .

[92]  Kian-Lee Tan,et al.  Real-time Targeted Influence Maximization for Online Advertisements , 2015, Proc. VLDB Endow..

[93]  Chuan Zhou,et al.  Personalized influence maximization on social networks , 2013, CIKM.

[94]  Wei Chen,et al.  Influence Blocking Maximization in Social Networks under the Competitive Linear Threshold Model , 2011, SDM.

[95]  Rajeev Motwani,et al.  The PageRank Citation Ranking : Bringing Order to the Web , 1999, WWW 1999.

[96]  Masahiro Kimura,et al.  Extracting Influential Nodes for Information Diffusion on a Social Network , 2007, AAAI.

[97]  Matthew Richardson,et al.  Mining the network value of customers , 2001, KDD '01.

[98]  Cécile Favre,et al.  Information diffusion in online social networks: a survey , 2013, SGMD.

[99]  Le Song,et al.  Scalable Influence Estimation in Continuous-Time Diffusion Networks , 2013, NIPS.

[100]  Evaggelia Pitoura,et al.  Diffusion Maximization in Evolving Social Networks , 2015, COSN.

[101]  Elchanan Mossel,et al.  Submodularity of Influence in Social Networks: From Local to Global , 2010, SIAM J. Comput..

[102]  Bernhard Schölkopf,et al.  Uncovering the Temporal Dynamics of Diffusion Networks , 2011, ICML.

[103]  Ken-ichi Kawarabayashi,et al.  Maximizing Time-Decaying Influence in Social Networks , 2016, ECML/PKDD.

[104]  Wanlei Zhou,et al.  A Sword with Two Edges: Propagation Studies on Both Positive and Negative Information in Online Social Networks , 2015, IEEE Transactions on Computers.

[105]  Reynold Cheng,et al.  Online Influence Maximization , 2015, KDD.

[106]  Zhoujun Li,et al.  Diabetes-Associated Factors as Predictors of Nursing Home Admission and Costs in the Elderly Across Europe. , 2017, Journal of the American Medical Directors Association.

[107]  Masahiro Kimura,et al.  Prediction of Information Diffusion Probabilities for Independent Cascade Model , 2008, KES.

[108]  David Kempe,et al.  Stability of influence maximization , 2014, KDD.

[109]  Divyakant Agrawal,et al.  Limiting the spread of misinformation in social networks , 2011, WWW.

[110]  Laks V. S. Lakshmanan,et al.  Revisiting the Stop-and-Stare Algorithms for Influence Maximization , 2017, Proc. VLDB Endow..

[111]  Laks V. S. Lakshmanan,et al.  SIMPATH: An Efficient Algorithm for Influence Maximization under the Linear Threshold Model , 2011, 2011 IEEE 11th International Conference on Data Mining.

[112]  Abhimanyu Das,et al.  Submodular meets Spectral: Greedy Algorithms for Subset Selection, Sparse Approximation and Dictionary Selection , 2011, ICML.

[113]  My T. Thai,et al.  Stop-and-Stare: Optimal Sampling Algorithms for Viral Marketing in Billion-scale Networks , 2016, SIGMOD Conference.