Association Rules

New association rules are presented for measure of association relationships between patterns. The new association rules are shown to not only measure three well-known association relationships correctly, but also satisfy other criteria for correct measure of association. Comparison with other measures is discussed both theoretically and experimentally. Applications in supervised mining of association rules and in pattern-driven multidimensional pattern analysis are presented.

[1]  Heikki Mannila,et al.  A database perspective on knowledge discovery , 1996, CACM.

[2]  Daniel Sánchez,et al.  A New Framework to Assess Association Rules , 2001, IDA.

[3]  Heikki Mannila,et al.  Finding interesting rules from large sets of discovered association rules , 1994, CIKM '94.

[4]  Wynne Hsu,et al.  Pruning and summarizing the discovered associations , 1999, KDD '99.

[5]  Sunita Sarawagi,et al.  Integrating association rule mining with relational database systems: alternatives and implications , 1998, SIGMOD '98.

[6]  Shamkant B. Navathe,et al.  Mining for strong negative associations in a large database of customer transactions , 1998, Proceedings 14th International Conference on Data Engineering.

[7]  Tomasz Imielinski,et al.  Database Mining: A Performance Perspective , 1993, IEEE Trans. Knowl. Data Eng..

[8]  Jiawei Han,et al.  Mining recurrent items in multimedia with progressive resolution refinement , 2000, Proceedings of 16th International Conference on Data Engineering (Cat. No.00CB37073).

[9]  Shamkant B. Navathe,et al.  An Efficient Algorithm for Mining Association Rules in Large Databases , 1995, VLDB.

[10]  Wynne Hsu,et al.  Discovering the set of fundamental rule changes , 2001, KDD '01.

[11]  Rajeev Motwani,et al.  Dynamic itemset counting and implication rules for market basket data , 1997, SIGMOD '97.

[12]  Jian Pei,et al.  Can we push more constraints into frequent pattern mining? , 2000, KDD '00.

[13]  Jiawei Han,et al.  Discovery of Multiple-Level Association Rules from Large Databases , 1995, VLDB.

[14]  Giuseppe Psaila,et al.  A New SQL-like Operator for Mining Association Rules , 1996, VLDB.

[15]  Tomasz Imielinski,et al.  Mining association rules between sets of items in large databases , 1993, SIGMOD Conference.

[16]  Peter Clark,et al.  Rule Induction with CN2: Some Recent Improvements , 1991, EWSL.

[17]  Christos Faloutsos,et al.  Ratio Rules: A New Paradigm for Fast, Quantifiable Data Mining , 1998, VLDB.

[18]  Padhraic Smyth,et al.  An Information Theoretic Approach to Rule Induction from Databases , 1992, IEEE Trans. Knowl. Data Eng..

[19]  A. Jaoua,et al.  Discovering knowledge from fuzzy concept lattice , 2001 .

[20]  Radim Belohlávek,et al.  Fuzzy Galois Connections , 1999, Math. Log. Q..

[21]  Niall M. Adams,et al.  Determining Hit Rate in Pattern Search , 2002, Pattern Detection and Discovery.

[22]  Kotagiri Ramamohanarao,et al.  Efficient Mining of High Confidience Association Rules without Support Thresholds , 1999, PKDD.

[23]  Jiawei Han,et al.  Metarule-Guided Mining of Multi-Dimensional Association Rules Using Data Cubes , 1997, KDD.

[24]  Dmitry Zelenko Optimizing Disjunctive Association Rules , 1999, PKDD.

[25]  Philip S. Yu,et al.  An effective hash-based algorithm for mining association rules , 1995, SIGMOD '95.

[26]  Jian Pei,et al.  Mining frequent patterns without candidate generation , 2000, SIGMOD 2000.

[27]  Laks V. S. Lakshmanan,et al.  Exploratory mining and pruning optimizations of constrained associations rules , 1998, SIGMOD '98.

[28]  Nicolas Pasquier,et al.  Efficient Mining of Association Rules Using Closed Itemset Lattices , 1999, Inf. Syst..

[29]  Edith Cohen,et al.  Finding interesting associations without support pruning , 2000, Proceedings of 16th International Conference on Data Engineering (Cat. No.00CB37073).

[30]  Hannu T. T. Toivonen,et al.  Samplinglarge databases for finding association rules , 1996, VLDB 1996.

[31]  Jinyan Li,et al.  Efficient mining of emerging patterns: discovering trends and differences , 1999, KDD '99.

[32]  Ramakrishnan Srikant,et al.  Mining Association Rules with Item Constraints , 1997, KDD.

[33]  Dimitrios Gunopulos,et al.  Efficient Mining of Spatiotemporal Patterns , 2001, SSTD.

[34]  Rajeev Motwani,et al.  Beyond market baskets: generalizing association rules to correlations , 1997, SIGMOD '97.

[35]  Frank Höppner Discovery of Core Episodes from Sequences , 2002, Pattern Detection and Discovery.

[36]  Jennifer Widom,et al.  Clustering association rules , 1997, Proceedings 13th International Conference on Data Engineering.

[37]  Rakesh Agarwal,et al.  Fast Algorithms for Mining Association Rules , 1994, VLDB 1994.

[38]  Bart Goethals,et al.  On Supporting Interactive Association Rule Mining , 2000, DaWaK.

[39]  Jean-Marc Adamo,et al.  Data Mining for Association Rules and Sequential Patterns , 2000, Springer New York.

[40]  A. J. Feelders,et al.  MAMBO: Discovering Association Rules Based on Conditional Independencies , 2001, IDA.

[41]  Jiawei Han,et al.  Efficient mining of partial periodic patterns in time series database , 1999, Proceedings 15th International Conference on Data Engineering (Cat. No.99CB36337).

[42]  Sanjay Ranka,et al.  An Efficient Algorithm for the Incremental Updation of Association Rules in Large Databases , 1997, KDD.

[43]  Rajeev Motwani,et al.  Computing Iceberg Queries Efficiently , 1998, VLDB.

[44]  Laks V. S. Lakshmanan,et al.  Efficient mining of constrained correlated sets , 2000, Proceedings of 16th International Conference on Data Engineering (Cat. No.00CB37073).

[45]  Jiawei Han,et al.  A fast distributed algorithm for mining association rules , 1996, Fourth International Conference on Parallel and Distributed Information Systems.

[46]  Ramakrishnan Srikant,et al.  Fast Algorithms for Mining Association Rules in Large Databases , 1994, VLDB.

[47]  Christian Borgelt,et al.  Mining molecular fragments: finding relevant substructures of molecules , 2002, 2002 IEEE International Conference on Data Mining, 2002. Proceedings..

[48]  D. Cheung,et al.  Maintenance of Discovered Association Rules: When to update? , 1997, DMKD.

[49]  Heikki Mannila,et al.  Fast Discovery of Association Rules , 1996, Advances in Knowledge Discovery and Data Mining.

[50]  Jiawei Han,et al.  Discovery of Spatial Association Rules in Geographic Information Databases , 1995, SSD.

[51]  Chris Clifton,et al.  Query flocks: a generalization of association-rule mining , 1998, SIGMOD '98.

[52]  Jiawei Han,et al.  Data Mining: Concepts and Techniques , 2000 .

[53]  Jian Pei,et al.  CLOSET: An Efficient Algorithm for Mining Frequent Closed Itemsets , 2000, ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery.

[54]  Sridhar Ramaswamy,et al.  On the Discovery of Interesting Patterns in Association Rules , 1998, VLDB.

[55]  Ramakrishnan Srikant,et al.  Mining generalized association rules , 1995, Future Gener. Comput. Syst..

[56]  Hannu Toivonen,et al.  Sampling Large Databases for Association Rules , 1996, VLDB.

[57]  Geoffrey I. Webb Discovering associations with numeric variables , 2001, KDD '01.

[58]  Nicolas Pasquier,et al.  Discovering Frequent Closed Itemsets for Association Rules , 1999, ICDT.

[59]  Roberto J. Bayardo,et al.  Efficiently mining long patterns from databases , 1998, SIGMOD '98.

[60]  Ramakrishnan Srikant,et al.  Mining sequential patterns , 1995, Proceedings of the Eleventh International Conference on Data Engineering.

[61]  Jaideep Srivastava,et al.  Selecting the right interestingness measure for association patterns , 2002, KDD.

[62]  Sridhar Ramaswamy,et al.  Cyclic association rules , 1998, Proceedings 14th International Conference on Data Engineering.

[63]  Roberto J. Bayardo,et al.  Mining the most interesting rules , 1999, KDD '99.

[64]  William Frawley,et al.  Knowledge Discovery in Databases , 1991 .

[65]  Wai-Ho Au,et al.  FARM: a data mining system for discovering fuzzy association rules , 1999, FUZZ-IEEE'99. 1999 IEEE International Fuzzy Systems. Conference Proceedings (Cat. No.99CH36315).

[66]  Balaji Padmanabhan,et al.  A Belief-Driven Method for Discovering Unexpected Patterns , 1998, KDD.

[67]  Geoffrey I. Webb Efficient search for association rules , 2000, KDD '00.

[68]  Ramakrishnan Srikant,et al.  Mining quantitative association rules in large relational tables , 1996, SIGMOD '96.

[69]  Srinivasan Parthasarathy,et al.  New Algorithms for Fast Discovery of Association Rules , 1997, KDD.

[70]  Mohammed J. Zaki Scalable Algorithms for Association Mining , 2000, IEEE Trans. Knowl. Data Eng..

[71]  Yasuhiko Morimoto,et al.  Computing Optimized Rectilinear Regions for Association Rules , 1997, KDD.

[72]  Marzena Kryszkiewicz Concise representation of frequent patterns based on disjunction-free generators , 2001, Proceedings 2001 IEEE International Conference on Data Mining.

[73]  Hongjun Lu,et al.  H-mine: hyper-structure mining of frequent patterns in large databases , 2001, Proceedings 2001 IEEE International Conference on Data Mining.

[74]  Mohammed J. Zaki Generating non-redundant association rules , 2000, KDD '00.

[75]  Frank Klawonn,et al.  Finding informative rules in interval sequences , 2001, Intell. Data Anal..

[76]  Vipin Kumar,et al.  Scalable parallel data mining for association rules , 1997, SIGMOD '97.

[77]  Nicholas I. Fisher,et al.  Bump hunting in high-dimensional data , 1999, Stat. Comput..

[78]  Leo Breiman,et al.  Classification and Regression Trees , 1984 .

[79]  H. Sebastian Seung,et al.  Learning the parts of objects by non-negative matrix factorization , 1999, Nature.

[80]  M.A.W. Houtsma,et al.  Set-Oriented Mining for Association Rules , 1993, ICDE 1993.

[81]  Ming-Syan Chen,et al.  On mining general temporal association rules in a publication database , 2001, Proceedings 2001 IEEE International Conference on Data Mining.

[82]  Geert Wets,et al.  Using association rules for product assortment decisions: a case study , 1999, KDD '99.

[83]  Gregory Piatetsky-Shapiro,et al.  Discovery, Analysis, and Presentation of Strong Rules , 1991, Knowledge Discovery in Databases.

[84]  Arun N. Swami,et al.  Set-oriented mining for association rules in relational databases , 1995, Proceedings of the Eleventh International Conference on Data Engineering.

[85]  Gerd Stumme,et al.  Mining Minimal Non-redundant Association Rules Using Frequent Closed Itemsets , 2000, Computational Logic.

[86]  Jiawei Han,et al.  Maintenance of discovered association rules in large databases: an incremental updating technique , 1996, Proceedings of the Twelfth International Conference on Data Engineering.

[87]  Yehuda Lindell,et al.  A Statistical Theory for Quantitative Association Rules , 1999, KDD '99.

[88]  Dimitrios Gunopulos,et al.  Constraint-Based Rule Mining in Large, Dense Databases , 1999, Proceedings 15th International Conference on Data Engineering (Cat. No.99CB36337).

[89]  Tomasz Imielinski,et al.  An Interval Classifier for Database Mining Applications , 1992, VLDB.

[90]  Heikki Mannila,et al.  Multiple Uses of Frequent Sets and Condensed Representations (Extended Abstract) , 1996, KDD.

[91]  Heikki Mannila,et al.  Efficient Algorithms for Discovering Association Rules , 1994, KDD Workshop.

[92]  Jinyan Li,et al.  Interestingness of Discovered Association Rules in Terms of Neighborhood-Based Unexpectedness , 1998, PAKDD.

[93]  Jiawei Han,et al.  Meta-Rule-Guided Mining of Association Rules in Relational Databases , 1995, KDOOD/TDOOD.

[94]  Daniel Sánchez,et al.  Mining Text Data: Special Features and Patterns , 2002, Pattern Detection and Discovery.

[95]  Ramakrishnan Srikant,et al.  The Quest Data Mining System , 1996, KDD.

[96]  Raghu Ramakrishnan,et al.  Bottom-up computation of sparse and Iceberg CUBE , 1999, SIGMOD '99.

[97]  Viktor Jovanoski,et al.  High Confidence Association Rules for Medical Diagnosis , 1999 .

[98]  Howard J. Hamilton,et al.  Knowledge discovery and measures of interest , 2001 .

[99]  Renée J. Miller,et al.  Association rules over interval data , 1997, SIGMOD '97.

[100]  Yasuhiko Morimoto,et al.  Data mining using two-dimensional optimized association rules: scheme, algorithms, and visualization , 1996, SIGMOD '96.

[101]  Jian Pei,et al.  CMAR: accurate and efficient classification based on multiple class-association rules , 2001, Proceedings 2001 IEEE International Conference on Data Mining.