Asymptotics and bootstrap inference for panel quantile regression models with fixed effects

This paper studies panel quantile regression models with fixed effects. We formally establish sufficient conditions for consistency and asymptotic normality of the quantile regression estimator when the number of individuals, n, and the number of time periods, T , jointly go to infinity. The estimator is shown to be consistent under similar conditions to those found in the nonlinear panel data literature. Nevertheless, due to the non-smoothness of the criterion function, we had to impose a more restrictive condition on T to prove asymptotic normality than that usually found in the literature. We also examine the practical ability of bootstrap procedures for inference in quantile regression models for panel data. The finite sample performance of the estimator and the bootstrap procedures are evaluated by Monte Carlo simulations.

[1]  Q. Shao,et al.  On Parameters of Increasing Dimensions , 2000 .

[2]  R. Koenker Quantile regression for longitudinal data , 2004 .

[3]  M. Talagrand Sharper Bounds for Gaussian and Empirical Processes , 1994 .

[4]  Carlos Lamarche,et al.  Robust penalized quantile regression estimation for panel data , 2010 .

[5]  M. Talagrand New concentration inequalities in product spaces , 1996 .

[6]  Victor Chernozhukov,et al.  Quantile Regression Under Misspecification, with an Application to the U.S. Wage Structure , 2004 .

[7]  J. Hahn Bootstrapping Quantile Regression Estimators , 1995, Econometric Theory.

[8]  J. Horowitz Bootstrap Methods for Median Regression Models , 1996 .

[9]  Jason Abrevaya,et al.  The effects of birth inputs on birthweight : evidence from quantile estimation on panel data by , 2007 .

[10]  C. Gutenbrunner,et al.  Regression Rank Scores and Regression Quantiles , 1992 .

[11]  Sílvia Gonçalves,et al.  THE MOVING BLOCKS BOOTSTRAP FOR PANEL LINEAR REGRESSION MODELS WITH INDIVIDUAL FIXED EFFECTS , 2011, Econometric Theory.

[12]  A. Cameron,et al.  Microeconometrics: Methods and Applications , 2005 .

[13]  T. Lancaster The incidental parameter problem since 1948 , 2000 .

[14]  Jinyong Hahn,et al.  JACKKNIFE AND ANALYTICAL BIAS REDUCTION FOR NONLINEAR PANEL MODELS , 2003 .

[15]  G. Imbens,et al.  Identification and Estimation of Triangular Simultaneous Equations Models without Additivity , 2002 .

[16]  Bruce G. Lindsay,et al.  Efficiency of projected score methods in rectangular array asymptotics , 2003 .

[17]  Moshe Buchinsky Estimating the asymptotic covariance matrix for quantile regression models a Monte Carlo study , 1995 .

[18]  Iván Fernández-Val,et al.  Bias Correction in Panel Data Models with Individual Specific Parameters , 2005 .

[19]  R. Koenker,et al.  Regression Quantiles , 2007 .

[20]  D. Pollard,et al.  Simulation and the Asymptotics of Optimization Estimators , 1989 .

[21]  P. Massart,et al.  About the constants in Talagrand's concentration inequalities for empirical processes , 2000 .

[22]  G. Kapetanios A Bootstrap Procedure for Panel Data Sets with Many Cross-Sectional Units , 2008 .

[23]  D. Ruppert,et al.  Trimmed Least Squares Estimation in the Linear Model , 1980 .

[24]  E. Giné,et al.  Rates of strong uniform consistency for multivariate kernel density estimators , 2002 .

[25]  Kjell A. Doksum,et al.  Empirical Probability Plots and Statistical Inference for Nonlinear Models in the Two-Sample Case , 1974 .

[26]  M. A. Arcones,et al.  Second Order Representations of the Least Absolute Deviation Regression Estimator , 1998 .

[27]  J. Hahn,et al.  The incidental parameter problem in a non-differentiable panel data model , 2009 .

[28]  Adam M. Rosen,et al.  Set identification via quantile restrictions in short panels , 2009 .

[29]  E. Giné,et al.  On consistency of kernel density estimators for randomly censored data: rates holding uniformly over adaptive intervals , 2001 .

[30]  Keith Knight,et al.  Limiting distributions for $L\sb 1$ regression estimators under general conditions , 1998 .

[31]  J. Neyman,et al.  Consistent Estimates Based on Partially Consistent Observations , 1948 .

[32]  Victor Chernozhukov,et al.  Quantile and average effects in nonseparable panel models , 2009 .