Impacts of future land use/land cover on wildfire occurrence in the Madrid region (Spain)

Abstract This paper assesses the relative importance of socioeconomic factors linked to fire occurrence through the simulation of future land use/land cover (LULC) change scenarios in the Madrid region (Spain). This region is a clear example of the socioeconomic changes that have been occurring over recent decades in the European Mediterranean as well as their impact on LULC and fire occurrence. Using the LULC changes observed between 1990 and 2006 as a reference, future scenarios were run up to 2025 with the conversion of land use and its effects model. Simultaneously, the relationship between LULC arrangement (interfaces) and historical fire occurrence was calculated using logistic regression analysis and used to quantify changes in future fire occurrence due to projected changes in LULC interfaces. The results revealed that it is possible to explain the probability of fire occurrence using only variables obtained from LULC maps, although the explanatory power of the model is low. In this context, border areas between some LULC types are of particular interest (i.e., urban/forest, grassland/forest and agricultural/forest interfaces). Results indicated that expected LULC changes in Euro-Mediterranean regions, particularly given the foreseeable increase in the wildland–urban interface, will substantially increase fire occurrence (up to 155 %). This underlines the importance of future LULC scenarios when planning fire prevention measures.

[1]  H. Preisler,et al.  Climate change and growth scenarios for California wildfire , 2011 .

[2]  R. G. Pontlus Quantification Error Versus Location Error in Comparison of Categorical Maps , 2006 .

[3]  Hj Norussis,et al.  SPSS for Windows , 1993 .

[4]  E. Chuvieco,et al.  Human-caused wildfire risk rating for prevention planning in Spain. , 2009, Journal of environmental management.

[5]  Terry Ford,et al.  Progress and Applications , 1993 .

[6]  A. González-Cabán,et al.  Proceedings of the second international symposium on fire economics, planning, and policy: a global view , 2008 .

[7]  Alain Franc,et al.  Biodiversity, disturbances, ecosystem function and management of European forests , 2000 .

[8]  A. Veldkamp,et al.  CLUE: a conceptual model to study the Conversion of Land Use and its Effects , 1996 .

[9]  K. Overmars,et al.  Dynamic simulation of land-use change trajectories with the CLUE-s model , 2007 .

[10]  Juli G. Pausas,et al.  Are wildfires a disaster in the Mediterranean basin? – A review , 2008 .

[11]  Hans C. Jessen,et al.  Applied Logistic Regression Analysis , 1996 .

[12]  R. Hewitt,et al.  Devolved Regions, Fragmented Landscapes: The Struggle for Sustainability in Madrid , 2010 .

[13]  J. W. Bruce,et al.  The causes of land-use and land-cover change: moving beyond the myths , 2001 .

[14]  Alex Hagen,et al.  Fuzzy set approach to assessing similarity of categorical maps , 2003, Int. J. Geogr. Inf. Sci..

[15]  Marta Gallardo Beltran Cambios de usos del suelo y simulación de escenarios en la Comunidad de Madrid , 2014 .

[16]  Peter H. Verburg,et al.  Accessibility and land-use patterns at the forest fringe in the northeastern part of the Philippines , 2004 .

[17]  F. Aguilera,et al.  Simulating greenhouse growth in urban zoning on the coast of Granada (Spain) , 2008 .

[18]  Bruce D. Malamud,et al.  Modelling Mediterranean landscape succession-disturbance dynamics: A landscape fire-succession model , 2009, Environ. Model. Softw..

[19]  Lara Vilar del Hoyo,et al.  Logistic regression models for human-caused wildfire risk estimation: analysing the effect of the spatial accuracy in fire occurrence data , 2011 .

[20]  J. Bouma,et al.  A spatial explicit allocation procedure for modelling the pattern of land use change based upon actual land use , 1999 .

[21]  L. Vilar,et al.  Human Factors of Fire Occurrence in the Mediterranean , 2009 .

[22]  Yu Chang,et al.  Spatial patterns and drivers of fire occurrence and its future trend under climate change in a boreal forest of Northeast China , 2012 .

[23]  J. Sendra,et al.  Detección de errores temáticos en el CORINE Land Cover a través del estudio de cambios: Comunidad de Madrid (2000-2006) , 2012 .

[24]  L. Yin Modeling Cumulative Effects of Wildfire Hazard Policy and Exurban Household Location Choices: An Application of Agent-based Simulations , 2010 .

[25]  A. Bregt,et al.  Revisiting Kappa to account for change in the accuracy assessment of land-use change models , 2011 .

[26]  T. Prato,et al.  Simulating effects of land use policies on extent of the wildland urban interface and wildfire risk in Flathead County, Montana. , 2013, Journal of environmental management.

[27]  Tom Fawcett,et al.  An introduction to ROC analysis , 2006, Pattern Recognit. Lett..

[28]  J. Nicolau,et al.  Abandonment of agricultural land: an overview of drivers and consequences , 2007 .

[29]  A. Callegari,et al.  Forest Fires , 1934, Nature.

[30]  Joaquín Bosque Sendra,et al.  Cambios de usos del suelo y expansión urbana en la Comunidad de Madrid (1990-2000) , 2009 .

[31]  Paloma Ruiz-Benito,et al.  Land use change in a Mediterranean metropolitan region and its periphery: Assessment of conservation policies through CORINE land cover data and Markov models , 2010 .

[32]  E. Lambin,et al.  Predicting land-use change , 2001 .

[33]  A. Westerling,et al.  Scenarios for future wildfire risk in California: links between changing demography, land use, climate, and wildfire , 2014 .

[34]  Alexandra D. Syphard,et al.  Land Use Planning and Wildfire: Development Policies Influence Future Probability of Housing Loss , 2013, PloS one.

[35]  David R. Brillinger,et al.  Probability based models for estimation of wildfire risk , 2004 .

[36]  Klaus Steinnocher,et al.  SIMULATION OF POLYCENTRIC URBAN GROWTH DYNAMICS THROUGH AGENTS , 2007 .

[37]  Emilio Chuvieco,et al.  Earth observation of wildland fires in Mediterranean ecosystems , 2009 .

[38]  S. Menard Applied Logistic Regression Analysis , 1996 .

[39]  M. Rodrigues,et al.  Methodological approach to assess the socio-economic vulnerability to wildfires in Spain. , 2013 .

[40]  Z. Christman,et al.  Land-use decision-making after large-scale forest fires: Analyzing fires as a driver of deforestation in Laguna del Tigre National Park, Guatemala , 2012 .

[41]  Juli G. Pausas,et al.  Fire regime changes in the Western Mediterranean Basin: from fuel-limited to drought-driven fire regime , 2011, Climatic Change.

[42]  George L. W. Perry,et al.  The role of land abandonment in landscape dynamics in the SPA 'Encinares del río Alberche y Cofio, Central Spain, 1984-1999 , 2004 .

[43]  O. Viedma,et al.  Interactions between land use/land cover change, forest fires and landscape structure in Sierra de Gredos (Central Spain) , 2006, Environmental Conservation.

[44]  J. R. Eastman,et al.  Land cover change in the Bolivian Amazon and its implications for REDD+ and endemic biodiversity , 2012, Landscape Ecology.

[45]  Brian Muller,et al.  Regional governance and hazard information: the role of co-ordinated risk assessment and regional spatial accounting in wildfire hazard mitigation , 2010 .

[46]  Douglas G. Woolford,et al.  A model for predicting human-caused wildfire occurrence in the region of Madrid, Spain , 2010 .

[47]  Alexandra D. Syphard,et al.  Simulating fire frequency and urban growth in southern California coastal shrublands, USA , 2007, Landscape Ecology.

[48]  Corinne Lampin-Maillet,et al.  Mapping wildland-urban interfaces at large scales integrating housing density and vegetation aggregation for fire prevention in the South of France. , 2010, Journal of environmental management.

[49]  Benjamin P. Bryant,et al.  Climate change and wildfire in California , 2008 .

[50]  E. Chuvieco,et al.  Development of a framework for fire risk assessment using remote sensing and geographic information system technologies , 2010 .

[51]  PETER H. VERBURG,et al.  Modeling the Spatial Dynamics of Regional Land Use: The CLUE-S Model , 2002, Environmental management.

[52]  S. Fotheringham,et al.  Modeling the spatial variation of the explanatory factors of human-caused wildfires in Spain using geographically weighted logistic regression , 2014 .

[53]  Nikos Koutsias,et al.  Modelling long-term fire occurrence factors in Spain by accounting for local variations with geographically weighted regression , 2013 .

[54]  Dinámica del riesgo de ignición en un área de interfase urbano-forestal , 2008 .

[55]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[56]  M. Vasconcelos,et al.  Spatial Prediction of Fire Ignition Probabilities: Comparing Logistic Regression and Neural Networks , 2001 .

[57]  Javier Martínez-Vega,et al.  Evaluación de la ocupación del suelo con un sistema experto de evaluación de tierras y un SIG en la Zona de Especial Protección para las Aves «Encinares de los ríos Alberche y Cofio», Madrid , 2012 .