The acceleration of boron neutron capture therapy using multi-linked mercaptoundecahydrododecaborate (BSH) fused cell-penetrating peptide.

[1]  M. A. Davis,et al.  Penetration of brain and brain tumor. VII. Tumor-binding sulfhydryl boron compounds. , 1967, Journal of medicinal chemistry.

[2]  L. C. Northcliffe,et al.  Range and stopping-power tables for heavy ions , 1970 .

[3]  K. Kanda,et al.  Analytical calculation of boron- 10 dosage in cell nucleus for neutron capture therapy. , 1982, Radiation research.

[4]  B. Allen,et al.  Monte Carlo calculations of ion passages through brain endothelial nuclei during boron neutron capture therapy. , 1993, International journal of radiation biology.

[5]  F. Szoka,et al.  Polyamidoamine cascade polymers mediate efficient transfection of cells in culture. , 1993, Bioconjugate chemistry.

[6]  E. Meijer,et al.  Encapsulation of Guest Molecules into a Dendritic Box , 1994, Science.

[7]  Natalie A. Lissy,et al.  Transduction of full-length TAT fusion proteins into mammalian cells: TAT-p27Kip1 induces cell migration , 1998, Nature Medicine.

[8]  K. Ono,et al.  Fluorine-18-labeled fluoroboronophenylalanine PET in patients with glioma. , 1998, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[9]  D. Tomalia,et al.  Poly(amidoamine) (PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications. , 2001, Drug discovery today.

[10]  H Terada,et al.  A High-Efficiency Protein Transduction System Demonstrating the Role of PKA in Long-Lasting Long-Term Potentiation , 2001, The Journal of Neuroscience.

[11]  T. Koga,et al.  Enantioselective Binding and Stable Encapsulation of α‐Amino Acids in a Helical Poly(L‐glutamic acid)‐Shelled Dendrimer in Aqueous Solutions , 2002, Chembiochem : a European journal of chemical biology.

[12]  K. Tomizawa,et al.  Protein Therapy: in vivo protein transduction by polyarginine (11R) PTD and subcellular targeting delivery. , 2003, Current protein & peptide science.

[13]  H. Yanagie,et al.  Intracellular targeting of sodium mercaptoundecahydrododecaborate (BSH) to solid tumors by transferrin-PEG liposomes, for boron neutron-capture therapy (BNCT). , 2004, Journal of controlled release : official journal of the Controlled Release Society.

[14]  Steven F Dowdy,et al.  Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis , 2004, Nature Medicine.

[15]  Ken Ohnishi,et al.  Evidence for the Involvement of Double-Strand Breaks in Heat-Induced Cell Killing , 2004, Cancer Research.

[16]  H. Hatanaka A revised boron-neutron capture therapy for malignant brain tumors , 1975, Journal of Neurology.

[17]  C. Tung,et al.  Calculations of cellular microdosimetry parameters for alpha particles and electrons. , 2004, Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine.

[18]  T. Takei,et al.  Synthesis and vesicle formation of a nido-carborane cluster lipid for boron neutron capture therapy. , 2004, Chemical communications.

[19]  E. Snyder,et al.  Recent advances in the use of protein transduction domains for the delivery of peptides, proteins and nucleic acids invivo , 2005 .

[20]  道上 宏之 The NH2 terminus of influenza virus hemagglutinin-2 subunit peptides enhances the antitumor potency of polyarginine-mediated p53 protein transduction , 2005 .

[21]  T. Tamiya,et al.  Ubiquitination‐resistant p53 protein transduction therapy facilitates anti‐cancer effect on the growth of human malignant glioma cells , 2005, FEBS letters.

[22]  M. Vicente,et al.  Boron Neutron Capture Therapy of Cancer: Current Status and Future Prospects , 2005, Clinical Cancer Research.

[23]  E. Snyder,et al.  Recent advances in the use of protein transduction domains for the delivery of peptides, proteins and nucleic acids in vivo. , 2005, Expert opinion on drug delivery.

[24]  Daniel J Brat,et al.  Hypoxia and the hypoxia-inducible-factor pathway in glioma growth and angiogenesis. , 2005, Neuro-oncology.

[25]  Martin J. van den Bent,et al.  Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. , 2005, The New England journal of medicine.

[26]  J. Hardy,et al.  Dendrons with spermine surface groups as potential building blocks for nonviral vectors in gene therapy. , 2006, Bioconjugate chemistry.

[27]  K. Ono,et al.  The potential of transferrin-pendant-type polyethyleneglycol liposomes encapsulating decahydrodecaborate-(10)B (GB-10) as (10)B-carriers for boron neutron capture therapy. , 2006, International journal of radiation oncology, biology, physics.

[28]  S. Dowdy,et al.  TAT transduction: the molecular mechanism and therapeutic prospects. , 2007, Trends in molecular medicine.

[29]  S. Miyatake,et al.  BORON NEUTRON CAPTURE THERAPY FOR MALIGNANT TUMORS RELATED TO MENINGIOMAS , 2007, Neurosurgery.

[30]  Takashi Nakajima,et al.  Fluorine-18-α-Methyltyrosine Positron Emission Tomography for Diagnosis and Staging of Lung Cancer: A Clinicopathologic Study , 2007, Clinical Cancer Research.

[31]  Y. Lim,et al.  Controlled bioactive nanostructures from self-assembly of peptide building blocks. , 2007, Angewandte Chemie.

[32]  Kit S Lam,et al.  From combinatorial chemistry to cancer-targeting peptides. , 2007, Molecular pharmaceutics.

[33]  Hiroyuki Nakamura,et al.  Synthesis of boron cluster lipids: closo-dodecaborate as an alternative hydrophilic function of boronated liposomes for neutron capture therapy. , 2007, Organic letters.

[34]  T. Niidome,et al.  Efficient delivery of siRNA using dendritic poly(L-lysine) for loss-of-function analysis. , 2008, Journal of controlled release : official journal of the Controlled Release Society.

[35]  L. Salford,et al.  Boron neutron capture therapy (BNCT) for glioblastoma multiforme: a phase II study evaluating a prolonged high-dose of boronophenylalanine (BPA). , 2006, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[36]  A. Detta,et al.  L-amino acid transporter-1 and boronophenylalanine-based boron neutron capture therapy of human brain tumors. , 2009, Cancer research.

[37]  R. Barth Boron neutron capture therapy at the crossroads: challenges and opportunities. , 2009, Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine.

[38]  M. Scadeng,et al.  Induction of in vivo synthetic lethal RNAi responses to treat glioblastoma , 2009, Cancer biology & therapy.

[39]  A. Matsumura,et al.  Boron neutron capture therapy for newly diagnosed glioblastoma. , 2009, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[40]  K. Tomizawa,et al.  Delivery of sodium borocaptate to glioma cells using immunoliposome conjugated with anti-EGFR antibodies by ZZ-His. , 2009, Biomaterials.

[41]  K. Tomizawa,et al.  Development of a bifunctional immunoliposome system for combined drug delivery and imaging in vivo. , 2010, Biomaterials.

[42]  M. Matsushita,et al.  Recent Advances in Protein Transduction Technology , 2010, Cell transplantation.

[43]  Y. Kanai,et al.  l‐Type amino acid transporter 1 inhibitors inhibit tumor cell growth , 2010, Cancer science.

[44]  S. Dowdy,et al.  Protein transduction domain delivery of therapeutic macromolecules. , 2011, Current opinion in biotechnology.

[45]  D. Engelman,et al.  pHLIP peptide targets nanogold particles to tumors , 2012, Proceedings of the National Academy of Sciences.

[46]  H. Ban,et al.  Design and synthesis of fluorescence-labeled closo-dodecaborate lipid: its liposome formation and in vivo imaging targeting of tumors for boron neutron capture therapy. , 2012, Organic & biomolecular chemistry.

[47]  T. Ohtsuki,et al.  Synthesis and properties of peptide dendrimers containing fluorescent and branched amino acids. , 2013, Biopolymers.