Conformations of kinesin: solution vs. crystal structures and interactions with microtubules

[1]  E. Mandelkow,et al.  Image Reconstructions of Microtubules Decorated with Monomeric and Dimeric Kinesins: Comparison with X-Ray Structure and Implications for Motility , 1998, The Journal of cell biology.

[2]  D I Svergun,et al.  Protein hydration in solution: experimental observation by x-ray and neutron scattering. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[3]  E. Mandelkow,et al.  Interaction of monomeric and dimeric kinesin with microtubules. , 1998, Journal of molecular biology.

[4]  K. Johnson,et al.  Alternating site mechanism of the kinesin ATPase. , 1998, Biochemistry.

[5]  E. Mandelkow,et al.  The Crystal Structure of Dimeric Kinesin and Implications for Microtubule-Dependent Motility , 1997, Cell.

[6]  E. Mandelkow,et al.  X-ray structure of motor and neck domains from rat brain kinesin. , 1997, Biochemistry.

[7]  Andreas Hoenger,et al.  A Model for the Microtubule-Ncd Motor Protein Complex Obtained by Cryo-Electron Microscopy and Image Analysis , 1997, Cell.

[8]  Ronald D Vale,et al.  Microtubule Interaction Site of the Kinesin Motor , 1997, Cell.

[9]  Wei Jiang,et al.  Influence of the Kinesin Neck Domain on Dimerization and ATPase Kinetics* , 1997, The Journal of Biological Chemistry.

[10]  K. Holmes The swinging lever-arm hypothesis of muscle contraction , 1997, Current Biology.

[11]  E. Taylor,et al.  Interacting Head Mechanism of Microtubule-Kinesin ATPase* , 1997, The Journal of Biological Chemistry.

[12]  R. Vale,et al.  Switches, latches, and amplifiers: common themes of G proteins and molecular motors , 1996, The Journal of cell biology.

[13]  R. Wade,et al.  Three-dimensional structure of functional motor proteins on microtubules , 1996, Current Biology.

[14]  N. Hirokawa,et al.  The molecular mechanism of organelle transport along microtubules: the identification and characterization of KIFs (kinesin superfamily proteins). , 1996, Cell structure and function.

[15]  K. Hirose,et al.  Three-dimensional cryoelectron microscopy of dimeric kinesin and ncd motor domains on microtubules. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[16]  G. Kleywegt Use of non-crystallographic symmetry in protein structure refinement. , 1996, Acta crystallographica. Section D, Biological crystallography.

[17]  I. Rayment Kinesin and myosin: molecular motors with similar engines. , 1996, Structure.

[18]  Roger Cooke,et al.  Crystal structure of the motor domain of the kinesin-related motor ncd , 1996, Nature.

[19]  Ronald D. Vale,et al.  Crystal structure of the kinesin motor domain reveals a structural similarity to myosin , 1996, Nature.

[20]  R. Cross,et al.  Weak and strong states of kinesin and ncd. , 1996, Journal of molecular biology.

[21]  R. Wade,et al.  How does taxol stabilize microtubules? , 1995, Current Biology.

[22]  E. Mandelkow,et al.  The microtubule lattice--dynamic instability of concepts. , 1995, Trends in cell biology.

[23]  J. Scholey,et al.  Structural variations among the kinesins. , 1995, Trends in cell biology.

[24]  R. Cross,et al.  Kinesin and ncd bind through a single head to microtubules and compete for a shared MT binding site. , 1995, Journal of molecular biology.

[25]  S. Brady A kinesin medley: biochemical and functional heterogeneity. , 1995, Trends in cell biology.

[26]  A. Hyman,et al.  Structural Changes Accompanying Gtp Hydrolysis in Microtubules: Information from a Slowly Hydrolyzable Analogue Guanylyl-(c ,/3)-methylene-diphosphonate , 1995 .

[27]  R. Vale,et al.  Tubulin GTP hydrolysis influences the structure, mechanical properties, and kinesin-driven transport of microtubules. , 1994, The Journal of biological chemistry.

[28]  J. Navaza,et al.  AMoRe: an automated package for molecular replacement , 1994 .

[29]  E. Mandelkow,et al.  Recombinant kinesin motor domain binds to beta-tubulin and decorates microtubules with a B surface lattice. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[30]  P. Kraulis A program to produce both detailed and schematic plots of protein structures , 1991 .

[31]  E. Mandelkow,et al.  Tubulin domains probed by limited proteolysis and subunit-specific antibodies. , 1985, Journal of molecular biology.

[32]  J. Bordas,et al.  X-ray diffraction and scattering on disordered systems using synchrotron radiation , 1983 .

[33]  E. Mandelkow,et al.  Microtubule structure at low resolution by x-ray diffraction. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[34]  A. Klug,et al.  Arrangement of subunits in flagellar microtubules. , 1974, Journal of cell science.

[35]  E. Mandelkow,et al.  The coiled-coil helix in the neck of kinesin. , 1998, Journal of structural biology.

[36]  Z. Otwinowski,et al.  Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[37]  R J Fletterick,et al.  The design plan of kinesin motors. , 1997, Annual review of cell and developmental biology.

[38]  Axel T. Brunger,et al.  X-PLOR Version 3.1: A System for X-ray Crystallography and NMR , 1992 .

[39]  J. Murray Structure of flagellar microtubules. , 1991, International review of cytology.