A Relative Monotone-Light Factorization System for Internal Groupoids

Given an exact category $${\mathcal {C}}$$C, it is well known that the connected component reflector $$ \pi _0 :\mathsf {Gpd}(\mathcal {C}) \rightarrow \mathcal {C}$$π0:Gpd(C)→C from the category $$\mathsf {Gpd}(\mathcal {C})$$Gpd(C) of internal groupoids in $$\mathcal {C}$$C to the base category $$\mathcal {C}$$C is semi-left-exact. In this article we investigate the existence of a monotone-light factorization system associated with this reflector. We show that, in general, there is no monotone-light factorization system $$(\mathcal {E}',\mathcal {M}^*)$$(E′,M∗) in $$\mathsf {Gpd}$$Gpd($$\mathcal {C}$$C), where $$\mathcal {M}^*$$M∗ is the class of coverings in the sense of the corresponding Galois theory. However, when restricting to the case where $$\mathcal {C}$$C is an exact Mal’tsev category, we show that the so-called comprehensive factorization of regular epimorphisms in $$\mathsf {Gpd}$$Gpd($$\mathcal {C}$$C) is the relative monotone-light factorization system (in the sense of Chikhladze) in the category $$\mathsf {Gpd}$$Gpd($$\mathcal {C}$$C) corresponding to the connected component reflector, where $$\mathcal {E}'$$E′ is the class of final functors and $$ \mathcal {M}^*$$M∗ the class of regular epimorphic discrete fibrations.

[1]  Dimitri Chikhladze Monotone-light factorization for Kan fibrations of simplicial sets with respect to groupoids , 2004 .

[2]  L. Illusie Complexe cotangent et déformations II , 1971 .

[3]  The 3-by-3 lemma for regular Goursat categories , 2004 .

[4]  Alan S. Cigoli,et al.  A Push Forward Construction and the Comprehensive Factorization for Internal Crossed Modules , 2013, Applied Categorical Structures.

[5]  D. Bourn The denormalized 3×3 lemma , 2003 .

[6]  Monotone-light factorisation systems and torsion theories , 2013, 1401.1484.

[7]  Joseph J. Rotman The Fundamental Theorem of Galois Theory , 1990 .

[8]  G Z Dzhanelidze,et al.  THE FUNDAMENTAL THEOREM OF GALOIS THEORY , 1989 .

[9]  Peter Gabriel,et al.  Calculus of Fractions and Homotopy Theory , 1967 .

[10]  Ronald Brown Topology and Groupoids , 2006 .

[11]  George Janelidze,et al.  Pure Galois theory in categories , 1990 .

[12]  INTERNAL MONOTONE-LIGHT FACTORIZATION FOR CATEGORIES VIA PREORDERS , 2004 .

[13]  G. M. Kelly,et al.  Reflective subcategories, localizations and factorizationa systems , 1985, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.

[14]  Ross Street,et al.  The comprehensive factorization of a functor , 1973 .

[15]  Marino Gran,et al.  A New Characterisation of Goursat Categories , 2012, Appl. Categorical Struct..

[16]  D. Bourn The shift functor and the comprehensive factorization for internal groupoids , 1987 .

[17]  G. Janelidze Internal Crossed Modules , 2003 .

[18]  G. M. Kelly,et al.  On Localization and Stabilization for Factorization Systems , 1997, Appl. Categorical Struct..

[19]  G. M. Kelly,et al.  Galois theory and a general notion of central extension , 1994 .

[20]  Marino Gran,et al.  Internal categories in Mal'cev categories , 1999 .

[21]  Walter Tholen,et al.  Beyond Barr Exactness: Effective Descent Morphisms , 2003 .

[22]  M. Gran Central extensions and internal groupoids in Maltsev categories , 2001 .