Bayesian point null hypothesis testing via the posterior likelihood ratio

This paper gives an exposition of the use of the posterior likelihood ratio for testing point null hypotheses in a fully Bayesian framework. Connections between the frequentist P-value and the posterior distribution of the likelihood ratio are used to interpret and calibrate P-values in a Bayesian context, and examples are given to show the use of simple posterior simulation methods to provide Bayesian tests of common hypotheses.

[1]  S Goodman,et al.  Bayesian analysis for a single 2 x 2 table. , 1998, Statistics in medicine.

[2]  Douglas G. Altman,et al.  Number needed to treat: properties and problems - Comments , 2000 .

[3]  J. Hutton,et al.  Number needed to treat: properties and problems , 2000 .

[4]  L Hashemi,et al.  Bayesian analysis for a single 2 x 2 table. , 1997, Statistics in medicine.

[5]  M. Stone Discussion of papers by Dempster and Aitkin , 1997, Stat. Comput..

[6]  J. Ware Investigating Therapies of Potentially Great Benefit: ECMO , 1989 .

[7]  R. G. Cornell,et al.  Extracorporeal circulation in neonatal respiratory failure: a prospective randomized study. , 1985, Pediatrics.

[8]  M. Tanner Tools for statistical inference: methods for the exploration of posterior distributions and likeliho , 1994 .

[9]  Roger L. Berger Comment on Perlman and Wu, “The Emperor’s new tests” (with rejoinder by authors) , 1999 .

[10]  Arthur P. Dempster,et al.  The direct use of likelihood for significance testing , 1997, Stat. Comput..

[11]  D. Cox,et al.  Parameter Orthogonality and Approximate Conditional Inference , 1987 .

[12]  M. Lawera Predictive inference : an introduction , 1995 .

[13]  Murray Aitkin The calibration of P-values, posterior Bayes factors and the AIC from the posterior distribution of the likelihood , 1997, Stat. Comput..

[14]  Thomas Chadwick,et al.  A general Bayes theory of nested model comparisons , 2002 .

[15]  H. V. Henderson,et al.  Building Multiple Regression Models Interactively , 1981 .

[16]  R. Wolpert,et al.  Integrated likelihood methods for eliminating nuisance parameters , 1999 .

[17]  William D. Kahn,et al.  A Cautionary Note for Bayesian Estimation of the Binomial Parameter n , 1987 .

[18]  F. Yates,et al.  Tests of Significance for 2 × 2 Contingency Tables , 1984 .

[19]  C Chartrand,et al.  [Extracorporeal circulation in dogs]. , 1974, L'union medicale du Canada.

[20]  Seymour Geisser,et al.  8. Predictive Inference: An Introduction , 1995 .

[21]  James O. Berger,et al.  Estimating a Product of Means: Bayesian Analysis with Reference Priors , 1989 .

[22]  Colin B. Begg,et al.  On inferences from Wei's biased coin design for clinical trials , 1990 .

[23]  M. A. Tanner,et al.  Tools for Statistical Inference: Methods for the Exploration of Posterior Distributions and Likelihood Functions, 3rd Edition , 1998 .

[24]  I. Olkin,et al.  A Comparison of n Estimators for the Binomial Distribution , 1981 .

[25]  John Hinde,et al.  Statistical Modelling in GLIM. , 1989 .

[26]  Murray Aitkin,et al.  Likelihood Analysis of a Binomial Sample Size Problem , 1989 .

[27]  P. M. E. Altham,et al.  Exact Bayesian Analysis of a 2 Times 2 Contingency Table, and Fisher's “Exact” Significance Test , 1969 .

[28]  Joel B. Greenhouse,et al.  [Investigating Therapies of Potentially Great Benefit: ECMO]: Comment: A Bayesian Perspective , 1989 .

[29]  R. L. Plackett,et al.  The marginal totals of a 2×2 table , 1977 .