Inferring spatial and signaling relationships between cells from single cell transcriptomic data

Single-cell RNA sequencing (scRNA-seq) provides details for individual cells; however, crucial spatial information is often lost. We present SpaOTsc, a method relying on structured optimal transport to recover spatial properties of scRNA-seq data by utilizing spatial measurements of a relatively small number of genes. A spatial metric for individual cells in scRNA-seq data is first established based on a map connecting it with the spatial measurements. The cell–cell communications are then obtained by “optimally transporting” signal senders to target signal receivers in space. Using partial information decomposition, we next compute the intercellular gene–gene information flow to estimate the spatial regulations between genes across cells. Four datasets are employed for cross-validation of spatial gene expression prediction and comparison to known cell–cell communications. SpaOTsc has broader applications, both in integrating non-spatial single-cell measurements with spatial data, and directly in spatial single-cell transcriptomics data to reconstruct spatial cellular dynamics in tissues. Dissociation of tissues allows high-throughput expression profiling of single cells, but spatial information is lost. Here the authors apply an unbalanced and structured optimal transport method to infer spatial and signalling relationships between cells from scRNA-seq data by integrating it with spatial imaging data.

[1]  Guocheng Yuan,et al.  Identification of spatially associated subpopulations by combining scRNA-seq and sequential fluorescence in situ hybridization data , 2018, Nature Biotechnology.

[2]  Torsten Suel,et al.  Estimating pairwise distances in large graphs , 2014, 2014 IEEE International Conference on Big Data (Big Data).

[3]  Leland McInnes,et al.  UMAP: Uniform Manifold Approximation and Projection , 2018, J. Open Source Softw..

[4]  Daniel A. Skelly,et al.  Single-Cell Transcriptional Profiling Reveals Cellular Diversity and Intercommunication in the Mouse Heart. , 2018, Cell reports.

[5]  H Clevers,et al.  decapentaplegic is a direct target of dTcf repression in the Drosophila visceral mesoderm. , 2000, Development.

[6]  N. Tolwinski,et al.  Epidermal Growth Factor Pathway Signaling in Drosophila Embryogenesis: Tools for Understanding Cancer , 2017, Cancers.

[7]  S. Teichmann,et al.  Exponential scaling of single-cell RNA-seq in the past decade , 2017, Nature Protocols.

[8]  J. Virieux,et al.  An optimal transport approach for seismic tomography: application to 3D full waveform inversion , 2016 .

[9]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[10]  Lai Guan Ng,et al.  Dimensionality reduction for visualizing single-cell data using UMAP , 2018, Nature Biotechnology.

[11]  Kan Liu,et al.  Giotto, a toolbox for integrative analysis and visualization of spatial expression data , 2020 .

[12]  Paul Hoffman,et al.  Integrating single-cell transcriptomic data across different conditions, technologies, and species , 2018, Nature Biotechnology.

[13]  Michael Boutros,et al.  Gene expression atlas of a developing tissue by single cell expression correlation analysis , 2018, bioRxiv.

[14]  J. Chiang,et al.  STUDIES IN ASTRONOMICAL TIME SERIES ANALYSIS. VI. BAYESIAN BLOCK REPRESENTATIONS , 2012, 1207.5578.

[15]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[16]  Xiangdong Wang,et al.  Cell–cell communication: old mystery and new opportunity , 2019, Cell Biology and Toxicology.

[17]  M. Leptin,et al.  Gastrulation in Drosophila: the logic and the cellular mechanisms , 1999, The EMBO journal.

[18]  Miguel de Val-Borro,et al.  The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package , 2018, The Astronomical Journal.

[19]  Judith A. Blake,et al.  Mouse Genome Database (MGD) 2019 , 2018, Nucleic Acids Res..

[20]  Yanguang Chen,et al.  A New Methodology of Spatial Cross-Correlation Analysis , 2015, PloS one.

[21]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[22]  Minoru Kanehisa,et al.  New approach for understanding genome variations in KEGG , 2018, Nucleic Acids Res..

[23]  Evan Z. Macosko,et al.  Single-Cell Multi-omic Integration Compares and Contrasts Features of Brain Cell Identity , 2019, Cell.

[24]  Long Cai,et al.  Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data , 2019, bioRxiv.

[25]  Piero Carninci,et al.  A draft network of ligand–receptor-mediated multicellular signalling in human , 2015, Nature Communications.

[26]  J. Marioni,et al.  High-throughput spatial mapping of single-cell RNA-seq data to tissue of origin , 2015, Nature Biotechnology.

[27]  Evan Z. Macosko,et al.  Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution , 2019, Science.

[28]  O. von Bohlen und Halbach,et al.  Distribution of PCP4 protein in the forebrain of adult mice. , 2014, Acta histochemica.

[29]  Guo-Cheng Yuan,et al.  Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH+ , 2019, Nature.

[30]  Allan R. Jones,et al.  Shared and distinct transcriptomic cell types across neocortical areas , 2018, Nature.

[31]  Randall D. Beer,et al.  Nonnegative Decomposition of Multivariate Information , 2010, ArXiv.

[32]  Gabriel Peyré,et al.  Gromov-Wasserstein Averaging of Kernel and Distance Matrices , 2016, ICML.

[33]  A. Regev,et al.  Spatial reconstruction of single-cell gene expression data , 2015 .

[34]  D. Kimelman,et al.  Wnt Signaling and the Evolution of Embryonic Posterior Development , 2009, Current Biology.

[35]  Allon M. Klein,et al.  Single-cell mapping of gene expression landscapes and lineage in the zebrafish embryo , 2018, Science.

[36]  Fabian J Theis,et al.  SCANPY: large-scale single-cell gene expression data analysis , 2018, Genome Biology.

[37]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[38]  J. Scargle Studies in astronomical time series analysis. III - Fourier transforms, autocorrelation functions, and cross-correlation functions of unevenly spaced data , 1989 .

[39]  H. Ashe,et al.  Regulation of the BMP Signaling-Responsive Transcriptional Network in the Drosophila Embryo , 2016, PLoS genetics.

[40]  Kelin Xia,et al.  Multiscale multiphysics and multidomain models--flexibility and rigidity. , 2013, The Journal of chemical physics.

[41]  Maria Kasper,et al.  Single-Cell Transcriptomics Reveals that Differentiation and Spatial Signatures Shape Epidermal and Hair Follicle Heterogeneity , 2016, Cell systems.

[42]  A. Page-McCaw,et al.  Wnt Signaling in Stem Cell Maintenance and Differentiation in the Drosophila Germarium , 2018, Genes.

[43]  J. Reichardt,et al.  Partitioning and modularity of graphs with arbitrary degree distribution. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[44]  Chee-Huat Linus Eng,et al.  Profiling the transcriptome by RNA SPOTs , 2018 .

[45]  Nicolas Courty,et al.  Optimal Transport for structured data , 2018, ArXiv.

[46]  James P. Crutchfield,et al.  dit: a Python package for discrete information theory , 2018, J. Open Source Softw..

[47]  C. Hill,et al.  The ventral to dorsal BMP activity gradient in the early zebrafish embryo is determined by graded expression of BMP ligands , 2013, Developmental biology.

[48]  Jean-Loup Guillaume,et al.  Fast unfolding of communities in large networks , 2008, 0803.0476.

[49]  Gunnar E. Carlsson,et al.  Topological estimation using witness complexes , 2004, PBG.

[50]  S. Sokol,et al.  Wnt signaling in vertebrate axis specification. , 2013, Cold Spring Harbor perspectives in biology.

[51]  Jonathan Weed,et al.  Statistical Optimal Transport via Factored Couplings , 2018, AISTATS.

[52]  Léon Bottou,et al.  Wasserstein Generative Adversarial Networks , 2017, ICML.

[53]  M. Fürthauer,et al.  Fgf signalling controls the dorsoventral patterning of the zebrafish embryo , 2004, Development.

[54]  Mariann Bienz,et al.  LEF-1, a Nuclear Factor Coordinating Signaling Inputs from wingless and decapentaplegic , 1997, Cell.

[55]  I. Amit,et al.  Single-cell spatial reconstruction reveals global division of labor in the mammalian liver , 2016, Nature.

[56]  M. Carandini,et al.  Vision and Locomotion Shape the Interactions between Neuron Types in Mouse Visual Cortex , 2016, Neuron.

[57]  Yu-Chiun Wang,et al.  Spatial bistability of Dpp–receptor interactions during Drosophila dorsal–ventral patterning , 2005, Nature.

[58]  Staci A. Sorensen,et al.  Adult Mouse Cortical Cell Taxonomy Revealed by Single Cell Transcriptomics , 2016 .

[59]  B. Tucker,et al.  PyMINEr Finds Gene and Autocrine-Paracrine Networks from Human Islet scRNA-Seq , 2019, Cell reports.

[60]  Thalia E. Chan,et al.  Gene Regulatory Network Inference from Single-Cell Data Using Multivariate Information Measures , 2016, bioRxiv.

[61]  Douglas A. Lauffenburger,et al.  Analysis of Single-Cell RNA-Seq Identifies Cell-Cell Communication Associated with Tumor Characteristics , 2018, Cell reports.

[62]  Zoubin Ghahramani,et al.  Proceedings of the 24th international conference on Machine learning , 2007, ICML 2007.

[63]  Marco Cuturi,et al.  Sinkhorn Distances: Lightspeed Computation of Optimal Transport , 2013, NIPS.

[64]  François-Xavier Vialard,et al.  Scaling algorithms for unbalanced optimal transport problems , 2017, Math. Comput..

[65]  M. Tamura,et al.  Cross-talk between Wnt and Bone Morphogenetic Protein 2 (BMP-2) Signaling in Differentiation Pathway of C2C12 Myoblasts* , 2005, Journal of Biological Chemistry.

[66]  Gustavo K. Rohde,et al.  Optimal Mass Transport: Signal processing and machine-learning applications , 2017, IEEE Signal Processing Magazine.

[67]  Qing Nie,et al.  Cell lineage and communication network inference via optimization for single-cell transcriptomics , 2019, Nucleic acids research.

[68]  J. Hooper Distinct pathways for autocrine and paracrine Wingless signalling inDrosophila embryos , 1994, Nature.

[69]  Salah Ayoub,et al.  The Drosophila Embryo at Single Cell Transcriptome Resolution , 2017, bioRxiv.

[70]  D. Kimelman,et al.  Combinatorial gene regulation by Bmp and Wnt in zebrafish posterior mesoderm formation , 2004, Development.

[71]  Burak Tepe,et al.  Single-Cell RNA-Seq of Mouse Olfactory Bulb Reveals Cellular Heterogeneity and Activity-Dependent Molecular Census of Adult-Born Neurons , 2018, Cell reports.

[72]  T. Schilling,et al.  Wnt Signaling Interacts with Bmp and Edn1 to Regulate Dorsal-Ventral Patterning and Growth of the Craniofacial Skeleton , 2014, PLoS genetics.

[73]  William E. Allen,et al.  Three-dimensional intact-tissue sequencing of single-cell transcriptional states , 2018, Science.

[74]  Christopher. Simons,et al.  Machine learning with Python , 2017 .

[75]  Nicolas Courty,et al.  Optimal Transport for structured data with application on graphs , 2018, ICML.

[76]  Andy Liaw,et al.  Classification and Regression by randomForest , 2007 .

[77]  P. Rigollet,et al.  Optimal-Transport Analysis of Single-Cell Gene Expression Identifies Developmental Trajectories in Reprogramming , 2019, Cell.

[78]  Christoph Hafemeister,et al.  Comprehensive integration of single cell data , 2018, bioRxiv.