Fast Alternating BiDirectional Preconditioner for the 2D High-Frequency Lippmann-Schwinger Equation

This paper presents a fast iterative solver for Lippmann-Schwinger equation for high-frequency waves scattered by a smooth medium with a compactly supported inhomogeneity. The solver is based on the sparsifying preconditioner and a domain decomposition approach similar to the method of polarized traces. The iterative solver has two levels, the outer level in which a sparsifying preconditioner for the Lippmann-Schwinger equation is constructed, and the inner level, in which the resulting sparsified system is solved fast using an iterative solver preconditioned with a bi-directional matrix-free variant of the method of polarized traces. The complexity of the construction and application of the preconditioner is $\mathcal{O}(N)$ and $\mathcal{O}(N\log{N})$ respectively, where $N$ is the number of degrees of freedom. Numerical experiments in 2D indicate that the number of iterations in both levels depends weakly on the frequency resulting in method with an overall $\mathcal{O}(N\log{N})$ complexity.

[1]  G. Vainikko Fast Solvers of the Lippmann-Schwinger Equation , 2000 .

[2]  Lexing Ying,et al.  Recursive Sweeping Preconditioner for the 3D Helmholtz Equation , 2015 .

[3]  Lexing Ying,et al.  Sparsifying Preconditioner for the Lippmann-Schwinger Equation , 2014, Multiscale Model. Simul..

[4]  Jingfang Huang,et al.  An adaptive fast solver for the modified Helmholtz equation in two dimensions , 2006 .

[5]  Oscar P. Bruno Wave scattering by inhomogeneous media: efficient algorithms and applications , 2003 .

[6]  Eric Darve,et al.  An O(NlogN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal O (N \log N)$$\end{document} Fast Direct Solver fo , 2013, Journal of Scientific Computing.

[7]  Gregory Beylkin,et al.  Fast convolution with the free space Helmholtz Green's function , 2009, J. Comput. Phys..

[8]  Martin J. Gander,et al.  Why it is Difficult to Solve Helmholtz Problems with Classical Iterative Methods , 2012 .

[9]  A. George Nested Dissection of a Regular Finite Element Mesh , 1973 .

[10]  Zhiming Chen,et al.  A Source Transfer Domain Decomposition Method For Helmholtz Equations in Unbounded Domain Part II: Extensions , 2013 .

[11]  Olaf Schenk,et al.  Solving unsymmetric sparse systems of linear equations with PARDISO , 2004, Future Gener. Comput. Syst..

[12]  Harold Weitzner,et al.  Lower hybrid waves in the cold plasma model , 1985 .

[13]  Per-Gunnar Martinsson,et al.  An O(N) Direct Solver for Integral Equations on the Plane , 2013, 1303.5466.

[14]  Per-Gunnar Martinsson,et al.  A spectrally accurate direct solution technique for frequency-domain scattering problems with variable media , 2013, 1308.5998.

[15]  John K. Reid,et al.  The Multifrontal Solution of Indefinite Sparse Symmetric Linear , 1983, TOMS.

[16]  Hongkai Zhao,et al.  Absorbing boundary conditions for domain decomposition , 1998 .

[17]  Eero Vainikko,et al.  Domain decomposition preconditioning for high-frequency Helmholtz problems with absorption , 2015, Math. Comput..

[18]  Christiaan C. Stolk,et al.  A rapidly converging domain decomposition method for the Helmholtz equation , 2012, J. Comput. Phys..

[19]  M B Amar,et al.  Numerical solution of the Lippmann-Schwinger equations in photoemission: application to xenon , 1983 .

[20]  Laurent Demanet,et al.  The method of polarized traces for the 2D Helmholtz equation , 2014, J. Comput. Phys..

[21]  Steven G. Johnson,et al.  The Design and Implementation of FFTW3 , 2005, Proceedings of the IEEE.

[22]  Stefan A. Sauter,et al.  Is the Pollution Effect of the FEM Avoidable for the Helmholtz Equation Considering High Wave Numbers? , 1997, SIAM Rev..

[23]  Leslie Greengard,et al.  Fast, Adaptive, High-Order Accurate Discretization of the Lippmann-Schwinger Equation in Two Dimensions , 2015, SIAM J. Sci. Comput..

[24]  L. Hervella-Nieto,et al.  Perfectly Matched Layers for Time-Harmonic Second Order Elliptic Problems , 2010 .

[25]  J. Tukey,et al.  An algorithm for the machine calculation of complex Fourier series , 1965 .

[26]  Lili Ju,et al.  An Overlapping Domain Decomposition Preconditioner for the Helmholtz equation , 2015 .

[27]  Steven G. Johnson,et al.  Notes on Perfectly Matched Layers (PMLs) , 2021, ArXiv.

[28]  Lexing Ying,et al.  Hierarchical Interpolative Factorization for Elliptic Operators: Integral Equations , 2013, 1307.2666.

[29]  Mario Bebendorf,et al.  F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig Hierarchical Lu Decomposition Based Preconditioners for Bem Hierarchical Lu Decomposition Based Preconditioners for Bem , 2022 .

[30]  Patrick Amestoy,et al.  A Fully Asynchronous Multifrontal Solver Using Distributed Dynamic Scheduling , 2001, SIAM J. Matrix Anal. Appl..

[31]  Ivo Babuška,et al.  A Generalized Finite Element Method for solving the Helmholtz equation in two dimensions with minimal pollution , 1995 .

[32]  Jack Dongarra,et al.  Special Issue on Program Generation, Optimization, and Platform Adaptation , 2005, Proc. IEEE.

[33]  Leslie Greengard,et al.  A Fast Direct Solver for Structured Linear Systems by Recursive Skeletonization , 2012, SIAM J. Sci. Comput..

[34]  Hongkai Zhao,et al.  Approximate Separability of Green's Function for High Frequency Helmholtz Equations , 2014 .

[35]  B. Engquist,et al.  Sweeping preconditioner for the Helmholtz equation: Hierarchical matrix representation , 2010, 1007.4290.

[36]  W. Hackbusch,et al.  Numerische Mathematik Existence of H-matrix approximants to the inverse FE-matrix of elliptic operators with L ∞-coefficients , 2002 .

[37]  Olaf Schenk,et al.  Solving unsymmetric sparse systems of linear equations with PARDISO , 2002, Future Gener. Comput. Syst..

[38]  Zhiming Chen,et al.  A Source Transfer Domain Decomposition Method for Helmholtz Equations in Unbounded Domain , 2013, SIAM J. Numer. Anal..

[39]  A. Bayliss,et al.  On accuracy conditions for the numerical computation of waves , 1985 .

[40]  Eric Darve,et al.  An $$\mathcal O (N \log N)$$O(NlogN)  Fast Direct Solver for Partial Hierarchically Semi-Separable Matrices , 2013 .

[41]  Pieter Ghysels,et al.  A Distributed-Memory Package for Dense Hierarchically Semi-Separable Matrix Computations Using Randomization , 2015, ACM Trans. Math. Softw..

[42]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[43]  Oscar P. Bruno,et al.  An efficient, preconditioned, high-order solver for scattering by two-dimensional inhomogeneous media , 2004 .

[44]  Patrick Joly,et al.  Mathematical and Numerical Aspects of Wave Propagation Phenomena , 1991 .

[45]  A. Majda,et al.  Absorbing boundary conditions for the numerical simulation of waves , 1977 .

[46]  Kevin Skadron,et al.  Scalable parallel programming , 2008, 2008 IEEE Hot Chips 20 Symposium (HCS).

[47]  Lexing Ying,et al.  Additive Sweeping Preconditioner for the Helmholtz Equation , 2015, Multiscale Model. Simul..

[48]  Yousef Saad,et al.  A Flexible Inner-Outer Preconditioned GMRES Algorithm , 1993, SIAM J. Sci. Comput..

[49]  Martin J. Gander,et al.  Optimized Schwarz Methods without Overlap for the Helmholtz Equation , 2002, SIAM J. Sci. Comput..

[50]  Christophe Geuzaine,et al.  Double sweep preconditioner for optimized Schwarz methods applied to the Helmholtz problem , 2014, J. Comput. Phys..

[51]  Laurent Demanet,et al.  Preconditioning the 2D Helmholtz equation with polarized traces , 2014, SEG Technical Program Expanded Abstracts 2014.

[52]  James Demmel,et al.  A Supernodal Approach to Sparse Partial Pivoting , 1999, SIAM J. Matrix Anal. Appl..

[53]  Fredrik Andersson,et al.  A Fast, Bandlimited Solver for Scattering Problems in Inhomogeneous Media , 2005 .

[54]  Martin J. Gander,et al.  Optimized Schwarz Methods , 2006, SIAM J. Numer. Anal..

[55]  Jean-Yves L'Excellent,et al.  Improving Multifrontal Methods by Means of Block Low-Rank Representations , 2015, SIAM J. Sci. Comput..

[56]  Wei Leng A Fast Propagation Method for the Helmholtz equation , 2015 .

[57]  G. Schmidt,et al.  Numerical Solution of the Lippmann–Schwinger Equation by Approximate Approximations , 2004 .

[58]  V. Rokhlin,et al.  A fast direct solver for boundary integral equations in two dimensions , 2003 .

[59]  Ran Duan,et al.  High-order quadratures for the solution of scattering problems in two dimensions , 2009, J. Comput. Phys..

[60]  Jianlin Xia,et al.  Superfast Multifrontal Method for Large Structured Linear Systems of Equations , 2009, SIAM J. Matrix Anal. Appl..

[61]  Per-Gunnar Martinsson,et al.  A Direct Solver with O(N) Complexity for Variable Coefficient Elliptic PDEs Discretized via a High-Order Composite Spectral Collocation Method , 2013, SIAM J. Sci. Comput..

[62]  Christiaan C. Stolk,et al.  An improved sweeping domain decomposition preconditioner for the Helmholtz equation , 2014, Adv. Comput. Math..

[63]  Laurent Demanet,et al.  Nested Domain Decomposition with Polarized Traces for the 2D Helmholtz Equation , 2015, SIAM J. Sci. Comput..

[64]  Alfredo Bermúdez,et al.  An optimal perfectly matched layer with unbounded absorbing function for time-harmonic acoustic scattering problems , 2007, J. Comput. Phys..

[65]  Leng We A Fast Propagation Method for the Helmholtz Equation , 2015 .

[66]  J. Mixter Fast , 2012 .

[67]  Lexing Ying,et al.  Sweeping Preconditioner for the Helmholtz Equation: Moving Perfectly Matched Layers , 2010, Multiscale Model. Simul..

[68]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[69]  Semyon Tsynkov,et al.  Compact 2D and 3D sixth order schemes for the Helmholtz equation with variable wave number , 2013, J. Comput. Phys..

[70]  Josef Sifuentes,et al.  Preconditioned iterative methods for inhomogeneous acoustic scattering applications , 2010 .

[71]  Timothy A. Davis,et al.  Algorithm 832: UMFPACK V4.3---an unsymmetric-pattern multifrontal method , 2004, TOMS.