Numerical algorithms for the FDiTD and FDFD simulation of slowly varying electromagnetic fields

The simulation of slowly varying electromagnetic fields is possible for very large, realistic problems with finite-difference implicit time-domain (FDiTD) and frequency-domain (FDFD) formulations on the basis of the consistent Finite-Integration Technique (FIT). Magneto-quasistatic time-domain formulations combined with implicit time marching schemes require the repeated solution of real-valued symmetric systems. The solution of driven frequency domain problems usually consists in the solution of one non-Hermitean system. Preconditioned conjugate gradient-type methods are well-suited for this task. They allow the efficient solution even for consistent singular or near-singular systems, which typically arise from formulations for slowly varying electromagnetic fields using the Maxwell-Grid-Equations of the FI-Method. Numerical results for TEAM workshop 11 benchmark problem and for a large practical problem, a shading ring sensor, show that the presented algorithms are capable of solving realistic problems for large numbers of unknowns in acceptable calculation times on contemporary medium sized workstations. Copyright © 1999 John Wiley & Sons, Ltd.

[1]  E. Stiefel,et al.  Relaxationsmethoden bester Strategie zur Lösung linearer Gleichungssysteme , 1955 .

[2]  K. Yee Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media , 1966 .

[3]  R. Alexander Diagonally implicit runge-kutta methods for stiff odes , 1977 .

[4]  Th. Weiland Zur Berechnung der Wirbelströme in beliebig geformten, lamellierten, dreidimensionalen Eisenkörpern , 1978 .

[5]  W. Haubitzer Das magnetische Feld und die Induktivität einer mehrlagigen Zylinderspule , 1978 .

[6]  Zur Berechnung der Wirbelströme in beliebig geformten, lamellierten, dreidimensionalen Eisenkörpern , 1979 .

[7]  H. Elman Iterative methods for large, sparse, nonsymmetric systems of linear equations , 1982 .

[8]  W. L. Wood,et al.  A unified set of single step algorithms. Part 1: General formulation and applications , 1984 .

[9]  Thomas Weiland,et al.  On the Unique Numerical Solution of Maxwellian Eigenvalue Problems in Three-dimensions , 1984 .

[10]  Owe Axelsson,et al.  A survey of preconditioned iterative methods for linear systems of algebraic equations , 1985 .

[11]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[12]  RESULTS FOR A HOLLOW SPHERE IN UNIFORM FIELD (BENCHMARK PROBLEM 6) , 1988 .

[13]  Guglielmo Rubinacci,et al.  Solution of three dimensional eddy current problems by integral and differential methods , 1988 .

[14]  S. Chamberlain,et al.  ENERGY‐MOMENTUM TRANSPORT MODEL SUITABLE FOR SMALL GEOMETRY SILICON DEVICE SIMULATION , 1990 .

[15]  H. V. D. Vorst,et al.  A Petrov-Galerkin type method for solving Axk=b, where A is symmetric complex , 1990 .

[16]  C.R.I. Emson SUMMARY OF RESULTS FOR HOLLOW CONDUCTING SPHERE IN UNIFORM TRANSIENTLY VARYING MAGNETIC FIELD (PROBLEM 11) , 1990 .

[17]  T. Morisue On the Gauging of the Magnetic Vector Potential , 1990 .

[18]  Thomas Weiland,et al.  3D eddy current computation in the frequency domain regarding the displacement current , 1992 .

[19]  Roland W. Freund,et al.  Conjugate Gradient-Type Methods for Linear Systems with Complex Symmetric Coefficient Matrices , 1992, SIAM J. Sci. Comput..

[20]  W. Hackbusch Iterative Solution of Large Sparse Systems of Equations , 1993 .

[21]  Roland W. Freund,et al.  On the use of two QMR algorithms for solving singular systems and applications in Markov chain modeling , 1994, Numer. Linear Algebra Appl..

[22]  Roland W. Freund,et al.  An Implementation of the QMR Method Based on Coupled Two-Term Recurrences , 1994, SIAM J. Sci. Comput..

[23]  Frieder Dipl Ing Heintz,et al.  Numerische Feldberechnung für die Entwicklung magnetischer Sensoren im Kraftfahrzeug , 1994 .

[24]  R. Holland,et al.  Finite-difference time-domain (FDTD) analysis of magnetic diffusion , 1994 .

[25]  Igor Tsukerman,et al.  A stability paradox for time-stepping schemes in coupled field-circuit problems , 1995 .

[26]  H. K. Dirks,et al.  Quasi-stationary fields for microelectronic applications , 1996 .

[27]  Linda R. Petzold,et al.  Numerical solution of initial-value problems in differential-algebraic equations , 1996, Classics in applied mathematics.

[28]  T. Weiland Time Domain Electromagnetic Field Computation with Finite Difference Methods , 1996 .

[29]  Edward K. N. Yung,et al.  TRANSIENT ANALYSIS OFn-TIER GaAs MESFET MATRIX AMPLIFIERS BY THE TLM METHOD , 1996 .

[30]  Computation of low-frequency electromagnetic fields , 1996 .

[31]  Thomas Weiland,et al.  A CONSISTENT SUBGRIDDING SCHEME FOR THE FINITE DIFFERENCE TIME DOMAIN METHOD , 1996 .

[32]  Kenneth R. Jackson,et al.  The numerical solution of large systems of stiff IVPs for ODEs , 1996 .

[33]  Rolf Schuhmann,et al.  Modern Krylov subspace methods in electromagnetic field computation using the finite integration theory , 1996 .

[34]  Maria A. Stuchly,et al.  Comparison of magnetically induced elf fields in humans computed by FDTD and scalar potential FD codes , 1996, 1996 Symposium on Antenna Technology and Applied Electromagnetics.

[35]  André Nicolet,et al.  Implicit Runge-Kutta methods for transient magnetic field computation , 1996 .

[36]  Thomas Weiland,et al.  Simulation of low-frequency fields on high-voltage insulators with light contaminations , 1996 .

[37]  Frank Cameron,et al.  Variable step size time integration methods for transient eddy current problems , 1998 .

[38]  Thomas Weiland,et al.  Comparison of Krylov-type methods for complex linear systems applied to high-voltage problems , 1998 .

[39]  Rolf Schuhmann,et al.  Stability of the FDTD algorithm on nonorthogonal grids related to the spatial interpolation scheme , 1998 .

[40]  Thomas Weiland,et al.  Numerical stability of finite difference time domain methods , 1998 .

[41]  R. Hiptmair Multigrid Method for Maxwell's Equations , 1998 .

[42]  Rolf Schuhmann,et al.  The Perfect Boundary Approximation Technique Facing the Big Challenge of High Precision Field Computation , 1998 .