Hemispherically aggregated BaTiO3 nanoparticle composite thin film for high-performance flexible piezoelectric nanogenerator.

We report high-performance flexible nanogenerators (NGs) based on a composite thin film, composed of hemispherically aggregated BaTiO3 nanoparticles (NPs) and poly(vinylidene fluoride-co-hexafluoropropene) P(VDF-HFP). The hemispherical BTO-P(VDF-HFP) clusters were realized by a solvent evaporation method, which greatly enhanced piezoelectric power generation. The flexible NGs exhibit high electrical output up to ∼75 V and ∼15 μA at the applied force normal to the surface, indicating the important role of hemispherical BTO clusters. Besides, the durability and reproducibility of the NGs were tested by cyclic measurement under bending stage, generating the output of ∼5 V and ∼750 nA. The approach we introduce here is simple, cost-effective, and well-suited for large-scale high-performance flexible NG fabrication.

[1]  Liming Dai,et al.  Characteristics of output voltage and current of integrated nanogenerators , 2009 .

[2]  Zhong Lin Wang,et al.  Functional electrical stimulation by nanogenerator with 58 V output voltage. , 2012, Nano letters.

[3]  Z. Wang Self‐Powered Nanosensors and Nanosystems , 2012, Advanced materials.

[4]  Ying Liu,et al.  Nanocomposite Generators: Flexible Nanocomposite Generator Made of BaTiO3 Nanoparticles and Graphitic Carbons (Adv. Mater. 22/2012) , 2012 .

[5]  Liwei Lin,et al.  Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. , 2010, Nano letters.

[6]  J. Scott,et al.  Applications of Modern Ferroelectrics , 2007, Science.

[7]  Di Wu,et al.  Fabrication and electrical properties of sol-gel derived BaTiO3 films with metallic LaNiO3 electrode , 1997 .

[8]  J. M. Baik,et al.  Self-connected and habitually tilted piezoelectric nanorod array. , 2011, ACS nano.

[9]  Kui Yao,et al.  Phase transition and properties of a ferroelectric poly(vinylidene fluoride-hexafluoropropylene) copolymer , 2005 .

[10]  Jin Liu,et al.  Piezoelectric Nanogenerators for Self-Powered Nanodevices , 2008, IEEE Pervasive Computing.

[11]  Alejandro Criado,et al.  Inside Cover: [16]Cloverphene: a Clover‐Shaped cata‐Condensed Nanographene with Sixteen Fused Benzene Rings (Angew. Chem. Int. Ed. 1/2012) , 2012 .

[12]  H. Fu,et al.  Large electromechanical response in ZnO and its microscopic origin , 2005 .

[13]  Xi Chen,et al.  1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers. , 2010, Nano letters.

[14]  Michael C. McAlpine,et al.  Flexible piezoelectric PMN-PT nanowire-based nanocomposite and device. , 2013, Nano letters.

[15]  Zhong Lin Wang,et al.  Self-powered system with wireless data transmission. , 2011, Nano letters.

[16]  Zhong Lin Wang,et al.  Enhanced triboelectric nanogenerators and triboelectric nanosensor using chemically modified TiO2 nanomaterials. , 2013, ACS nano.

[17]  Zhong Lin Wang,et al.  Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays , 2006, Science.

[18]  Geon-Tae Hwang,et al.  Piezoelectric BaTiO₃ thin film nanogenerator on plastic substrates. , 2010, Nano letters.

[19]  Zhong Lin Wang,et al.  Triboelectric nanogenerator built on suspended 3D spiral structure as vibration and positioning sensor and wave energy harvester. , 2013, ACS nano.

[20]  Hyun‐Wook Lee,et al.  Synthesis and Size Control of Tetragonal Barium Titanate Nanopowders by Facile Solvothermal Method , 2012 .

[21]  Ralf B. Wehrspohn,et al.  Nanoshell tubes of ferroelectric lead zirconate titanate and barium titanate , 2003 .

[22]  Sung-Ho Shin,et al.  Piezoelectric performance enhancement of ZnO flexible nanogenerator by a CuO–ZnO p–n junction formation , 2013 .

[23]  Don Berlincourt,et al.  Elastic and Piezoelectric Coefficients of Single-Crystal Barium Titanate , 1958 .

[24]  Yong Qin,et al.  Flexible Nanogenerator Based on Single BaTiO3 Nanowire , 2013 .

[25]  Xing Wang Zhang,et al.  Plasmonic polymer tandem solar cell. , 2011, ACS nano.

[26]  Zhigang Suo,et al.  Electrical breakdown and ultrahigh electrical energy density in poly(vinylidene fluoride-hexafluoropropylene) copolymer , 2009 .

[27]  Long Lin,et al.  Pyroelectric nanogenerators for harvesting thermoelectric energy. , 2012, Nano letters.

[28]  Yan Zhang,et al.  Pyroelectric nanogenerators for driving wireless sensors. , 2012, Nano letters.

[29]  Zhong Lin Wang,et al.  Nanotechnology-enabled energy harvesting for self-powered micro-/nanosystems. , 2012, Angewandte Chemie.

[30]  Dukhyun Choi,et al.  p-Type polymer-hybridized high-performance piezoelectric nanogenerators. , 2012, Nano letters.

[31]  Zhong Lin Wang,et al.  Power generation with laterally packaged piezoelectric fine wires. , 2009, Nature nanotechnology.

[32]  Yasuyoshi Saito,et al.  Lead-free piezoceramics , 2004, Nature.

[33]  Insu Kim,et al.  Virus-directed design of a flexible BaTiO3 nanogenerator. , 2013, ACS nano.

[34]  J. Rogers,et al.  Heterogeneous integration of InGaAs nanowires on the rear surface of Si solar cells for efficiency enhancement. , 2012, ACS nano.

[35]  José Antonio Malmonge,et al.  Study of pyroelectric activity of PZT/PVDF-HFP composite , 2003 .

[36]  Zhong Lin Wang,et al.  Toward self-powered sensor networks , 2010 .

[37]  Zhong Lin Wang,et al.  Lead zirconate titanate nanowire textile nanogenerator for wearable energy-harvesting and self-powered devices. , 2012, ACS nano.