Unravelling the enigma of selective vulnerability in neurodegeneration: motor neurons resistant to degeneration in ALS show distinct gene expression characteristics and decreased susceptibility to excitotoxicity

[1]  A. Ludolph,et al.  Amyotrophic lateral sclerosis. , 2012, Current opinion in neurology.

[2]  Michael Sendtner,et al.  Molecular pathways of motor neuron injury in amyotrophic lateral sclerosis , 2011, Nature Reviews Neurology.

[3]  C. Hoogenraad,et al.  Spinal Inhibitory Interneuron Pathology Follows Motor Neuron Degeneration Independent of Glial Mutant Superoxide Dismutase 1 Expression in SOD1-ALS Mice , 2011, Journal of neuropathology and experimental neurology.

[4]  J. Ule,et al.  Characterizing the RNA targets and position-dependent splicing regulation by TDP-43. , 2011, Nature neuroscience.

[5]  L. Martin,et al.  Glycine Receptor Channels in Spinal Motoneurons Are Abnormal in a Transgenic Mouse Model of Amyotrophic Lateral Sclerosis , 2011, The Journal of Neuroscience.

[6]  P. Seeburg,et al.  Induced Loss of ADAR2 Engenders Slow Death of Motor Neurons from Q/R Site-Unedited GluR2 , 2010, The Journal of Neuroscience.

[7]  O. Isacson,et al.  Global gene expression profiling of somatic motor neuron populations with different vulnerability identify molecules and pathways of degeneration and protection. , 2010, Brain : a journal of neurology.

[8]  Neil D. Lawrence,et al.  puma: a Bioconductor package for propagating uncertainty in microarray analysis , 2009, BMC Bioinformatics.

[9]  S. Arber,et al.  Transcriptional mechanisms controlling motor neuron diversity and connectivity , 2008, Current Opinion in Neurobiology.

[10]  S. Guthrie,et al.  Patterning and axon guidance of cranial motor neurons , 2007, Nature Reviews Neuroscience.

[11]  L. Thompson,et al.  Myofiber length and three-dimensional localization of NMJs in normal and botulinum toxin treated adult extraocular muscles. , 2007, Investigative ophthalmology & visual science.

[12]  Neil D. Lawrence,et al.  Probe-level measurement error improves accuracy in detecting differential gene expression , 2006, Bioinform..

[13]  H. Bras,et al.  Differential expression of GABAA and glycine receptors in ALS‐resistant vs. ALS‐vulnerable motoneurons: possible implications for selective vulnerability of motoneurons , 2006, The European journal of neuroscience.

[14]  Thomas M. Jessell,et al.  A Hox Regulatory Network Establishes Motor Neuron Pool Identity and Target-Muscle Connectivity , 2005, Cell.

[15]  A Al-Chalabi,et al.  Abnormal cortical excitability in sporadic but not homozygous D90A SOD1 ALS , 2005, Journal of Neurology, Neurosurgery & Psychiatry.

[16]  I. Mackenzie,et al.  Ubiquitin Immunohistochemistry Suggests Classic Motor Neuron Disease, Motor Neuron Disease With Dementia, and Frontotemporal Dementia of the Motor Neuron Disease Type Represent a Clinicopathologic Spectrum , 2005, Journal of neuropathology and experimental neurology.

[17]  I. Kanazawa,et al.  Expression profile of AMPA receptor subunit mRNA in single adult rat brain and spinal cord neurons in situ , 2005, Neuroscience Research.

[18]  P. Seeburg,et al.  Late-onset motoneuron disease caused by a functionally modified AMPA receptor subunit. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[19]  E. Feldman,et al.  Identification of candidate drugs for the treatment of ALS , 2005, Amyotrophic lateral sclerosis and other motor neuron disorders : official publication of the World Federation of Neurology, Research Group on Motor Neuron Diseases.

[20]  S. Itohara,et al.  Calcium-permeable AMPA receptors promote misfolding of mutant SOD1 protein and development of amyotrophic lateral sclerosis in a transgenic mouse model. , 2004, Human molecular genetics.

[21]  Jean YH Yang,et al.  Bioconductor: open software development for computational biology and bioinformatics , 2004, Genome Biology.

[22]  J. Agar,et al.  Focal dysfunction of the proteasome: a pathogenic factor in a mouse model of amyotrophic lateral sclerosis , 2004, Journal of neurochemistry.

[23]  Q. Wan,et al.  Circadian regulation of GABAA receptor function by CKIε-CKIδ in the rat suprachiasmatic nuclei , 2004, Nature Neuroscience.

[24]  Ichiro Kanazawa,et al.  Glutamate receptors: RNA editing and death of motor neurons , 2004, Nature.

[25]  B. Pachter Rat extraocular muscle , 1984, Histochemistry.

[26]  Q. Wan,et al.  Circadian regulation of GABAA receptor function by CKI epsilon-CKI delta in the rat suprachiasmatic nuclei. , 2004, Nature neuroscience.

[27]  Mitsunori Watanabe,et al.  Oculomotor nuclear pathology in amyotrophic lateral sclerosis , 2004, Acta Neuropathologica.

[28]  Ann C. McKee,et al.  Patterns of neuronal degeneration in the motor cortex of amyotrophic lateral sclerosis patients , 2004, Acta Neuropathologica.

[29]  S. Hirai,et al.  Light and electron microscopic and immunohistochemical observations of the Onuf's nucleus of amyotrophic lateral sclerosis , 2004, Acta Neuropathologica.

[30]  John D. Storey The positive false discovery rate: a Bayesian interpretation and the q-value , 2003 .

[31]  Brad T. Sherman,et al.  DAVID: Database for Annotation, Visualization, and Integrated Discovery , 2003, Genome Biology.

[32]  I. Kanazawa,et al.  Human spinal motoneurons express low relative abundance of GluR2 mRNA: an implication for excitotoxicity in ALS , 2003, Journal of neurochemistry.

[33]  J. D. Porter,et al.  Molecular organization of the extraocular muscle neuromuscular junction: partial conservation of and divergence from the skeletal muscle prototype. , 2003, Investigative ophthalmology & visual science.

[34]  J. Warrington,et al.  Accurate and reproducible gene expression profiles from laser capture microdissection, transcript amplification, and high density oligonucleotide microarray analysis. , 2003, The Journal of molecular diagnostics : JMD.

[35]  J. D. Porter Extraocular Muscle: Cellular Adaptations for a Diverse Functional Repertoire , 2002, Annals of the New York Academy of Sciences.

[36]  J. D. Porter,et al.  Extraocular muscle is defined by a fundamentally distinct gene expression profile , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[37]  J. Lipski,et al.  GluR2 AMPA Receptor Subunit Expression in Motoneurons at Low and High Risk for Degeneration in Amyotrophic Lateral Sclerosis , 2001, Experimental Neurology.

[38]  P N Leigh,et al.  Extramotor involvement in ALS: PET studies with the GABA(A) ligand [(11)C]flumazenil. , 2000, Brain : a journal of neurology.

[39]  W. Robberecht,et al.  AMPA Receptor Current Density, Not Desensitization, Predicts Selective Motoneuron Vulnerability , 2000, The Journal of Neuroscience.

[40]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[41]  F E Bloom,et al.  Differential vulnerability of oculomotor, facial, and hypoglossal nuclei in G86R superoxide dismutase transgenic mice , 2000, The Journal of comparative neurology.

[42]  Hiroyuki Ogata,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 1999, Nucleic Acids Res..

[43]  M. Yamauchi,et al.  Decreased type IV collagen of skin and serum in patients with amyotrophic lateral sclerosis , 1998, Neurology.

[44]  Richard L. Huganir,et al.  GRIP: a synaptic PDZ domain-containing protein that interacts with AMPA receptors , 1997, Nature.

[45]  H. Stewart,et al.  Abnormalities of cortical inhibitory neurons in amyotrophic lateral sclerosis , 1997, Muscle & nerve.

[46]  A. Ludolph,et al.  Skin involvement in amyotrophic lateral sclerosis , 1996, The Lancet.

[47]  E. Bjertness,et al.  Neuropathological diagnoses in elderly patients in Oslo: Alzheimer's disease, Lewy body disease, vascular lesions. , 1995, Dementia.

[48]  P. Leigh,et al.  Motor neuron disease. , 1994, Springer London.

[49]  K. Madden Effect of gamma-aminobutyric acid modulation on neuronal ischemia in rabbits. , 1994, Stroke.

[50]  J. D. Porter,et al.  Survival of extraocular muscle in long-term organotypic culture: differential influence of appropriate and inappropriate motoneurons. , 1993, Developmental biology.

[51]  M. Yamauchi,et al.  Amyotrophic lateral sclerosis: unusually low content of collagen in skin , 1990, Journal of the Neurological Sciences.

[52]  Shuichi Kato,et al.  Total manifestations of amyotrophic lateral sclerosis ALS in the totally locked-in state , 1989, Journal of the Neurological Sciences.

[53]  J. Soghomonian,et al.  GABA innervation in adult rat oculomotor nucleus: A radioautographic and immunocytochemical study , 1989, Journal of neurocytology.

[54]  D. Davidson,et al.  A gene with sequence similarity to Drosophila engrailed is expressed during the development of the neural tube and vertebrae in the mouse. , 1988, Development.

[55]  P. Seeburg,et al.  Structural and functional basis for GABAA receptor heterogeneity , 1988, Nature.

[56]  M. Geffard,et al.  Anatomical distribution and ultrastructural organization of the gabaergic system in the rat spinal cord. An immunocytochemical study using anti-GABA antibodies , 1987, Neuroscience.

[57]  Pachter Br Rat extraocular muscle. 1. Three dimensional cytoarchitecture, component fibre populations and innervation. , 1983 .

[58]  B. Pachter Rat extraocular muscle. 1. Three dimensional cytoarchitecture, component fibre populations and innervation. , 1983, Journal of anatomy.

[59]  K. Nagashima,et al.  Preservation of a certain motoneurone group of the sacral cord in amyotrophic lateral sclerosis: its clinical significance. , 1977, Journal of neurology, neurosurgery, and psychiatry.

[60]  D. Robinson Oculomotor unit behavior in the monkey. , 1970, Journal of neurophysiology.