Some kinds of (epsilon, epsilon or q)-interval-valued fuzzy ideals of BCI-algebras
暂无分享,去创建一个
Jianming Zhan | Young Bae Jun | Bijan Davvaz | Xueling Ma | Y. Jun | B. Davvaz | J. Zhan | Xueling Ma
[1] Jun Ma,et al. Redefined fuzzy implicative filters , 2007, Inf. Sci..
[2] Jianming Zhan,et al. Fuzzy multiply positive implicative hyper BCK-ideals of hyper BCK-algebras , 2004, Int. J. Math. Math. Sci..
[3] Young Bae Jun,et al. Applications of soft sets in ideal theory of BCK/BCI-algebras , 2008, Inf. Sci..
[4] Jianming Zhan,et al. On f-derivations of BCI-algebras , 2005, Int. J. Math. Math. Sci..
[5] M. Aslam. Ideal theory of BCK-algebra , 1976 .
[6] Jianming Zhan,et al. CHARACTERIZATIONS OF DOUBT FUZZY H-IDEALS IN BCK-ALGEBRAS , 2003 .
[7] C. Chang,et al. Algebraic analysis of many valued logics , 1958 .
[8] K. Iseki. On BCI-Algebras , 1980 .
[9] Sandeep Kumar Bhakat,et al. (∈, ∈∨q)-fuzzy Normal, Quasinormal and Maximal Subgroups , 2000, Fuzzy Sets Syst..
[10] L. A. ZADEH,et al. The concept of a linguistic variable and its application to approximate reasoning - I , 1975, Inf. Sci..
[11] Wenyi Zeng,et al. Relationship between similarity measure and entropy of interval valued fuzzy sets , 2006, Fuzzy Sets Syst..
[12] J. Bae. ON (α, β)-FUZZY IDEALS OF BCK/BCI-ALGEBRAS , 2004 .
[13] IorgulescuAfrodita. On BCK algebras , 2008, SOCO 2008.
[14] R. Biswas. Rosenfeld's fuzzy subgroups with interval-valued membership functions , 1994 .
[15] Y. Jun,et al. SOME TYPES OF (Î,Î VQ)-INTERVAL-VALUED FUZZY IDEALS OF BCI ALGEBRAS , 2009 .
[16] Lotfi A. Zadeh,et al. Toward a generalized theory of uncertainty (GTU)--an outline , 2005, Inf. Sci..
[17] Jie Meng,et al. Fuzzy ideals in BCI-algebras , 2001, Fuzzy Sets Syst..
[18] Glad Deschrijver,et al. Arithmetic operators in interval-valued fuzzy set theory , 2007, Inf. Sci..
[19] W. Dudek. ON GROUP-LIKE BCI-ALGEBRAS , 1988 .
[20] J Meng. Positive Implicative BCI-algebras , 1993 .
[21] Petr Hájek,et al. Metamathematics of Fuzzy Logic , 1998, Trends in Logic.
[22] Bijan Davvaz,et al. Redefined fuzzy Hv-submodules and many valued implications , 2007, Inf. Sci..
[23] Young Bae Jun,et al. Intuitionistic nil radicals of intuitionistic fuzzy ideals and Euclidean intuitionistic fuzzy ideals in rings , 2007, Inf. Sci..
[24] Jie Meng,et al. On fuzzy ideals in BCK/BCI-algebras , 2005, Fuzzy Sets Syst..
[25] Zhu Rong,et al. Fuzzy Commutative Ideals in BCK-algebras , 2003 .
[26] D. Mundici. MV-algebras are categorically equivalent to bounded commutative BCK-algebras , 1986 .
[27] L. Zadeh. Fuzzy Topology. I. Neighborhood Structure of a Fuzzy Point and Moore-Smith Convergence* , 2003 .
[28] Michiro Kondo,et al. ON TRANSFER PRINCIPLE OF FUZZY BCK/BCI-ALGEBRAS , 2004 .
[29] J. Zhan,et al. T-FUZZY MULTIPLY POSITIVE IMPLICATIVE BCC-IDEALS OF BCC-ALGEBRAS , 2003 .
[30] Jianming Zhan,et al. Fuzzy h-ideals of hemirings , 2007, Inf. Sci..
[31] Lotfi A. Zadeh,et al. The Concepts of a Linguistic Variable and its Application to Approximate Reasoning , 1975 .
[32] A. Iorgulescu. SOME DIRECT ASCENDENTS OF WAJSBERG AND MV ALGEBRAS , 2003 .
[33] S. K. Bhakat,et al. (ε Ɛ V Q)-fuzzy Subgroup , 1996, Fuzzy Sets Syst..
[34] Yisheng Huang. ON IMPLICATIVE BCI-ALGEBRAS , 2006 .
[35] K. Iseki,et al. AN INTRODUCTION TO THE THEORY OF THE BCK-ALGEBRAS , 1978 .
[36] Y. Jun. On (α,β)-fuzzy subalgebras of BCK/BCI-algebras , 2005 .
[37] K. Iseki,et al. ON AXIOM SYSTEMS OF PROPOSITIONAL CALCULI XIV , 1966 .
[38] Yang Xu,et al. Pseudo-BCK algebras and PD-posets , 2007, Soft Comput..
[39] K. Iseki. An Algebra Related with a Propositional Calculus , 1966 .
[40] Jie Meng,et al. AN IDEAL CHARACTERIZATION OF COMMUTATIVE BCI-ALGEBRAS , 1993 .
[41] Lotfi A. Zadeh,et al. Toward a generalized theory of uncertainty (GTU) - an outline , 2005, GrC.
[42] Jie Meng,et al. FSI-IDEALS AND FSC-IDEALS OF BCI-ALGEBRAS , 2004 .
[43] Young Bae Jun,et al. Fuzzy strong implicative hyper BCK-ideals of hyper BCK-algebras , 2005, Inf. Sci..
[44] Afrodita Iorgulescu,et al. Pseudo-Iséki Algebras. Connection with Pseudo-BL Algebras , 2005, J. Multiple Valued Log. Soft Comput..
[45] Lluis Godo,et al. Monoidal t-norm based logic: towards a logic for left-continuous t-norms , 2001, Fuzzy Sets Syst..
[46] Bijan Davvaz,et al. (∈, ∈ ∨ q)-fuzzy subnear-rings and ideals , 2006, Soft Comput..
[47] Yang Xu,et al. BCI-implicative ideals of BCI-algebras , 2007, Inf. Sci..
[48] Jianming Zhan,et al. A new view of fuzzy hypernear-rings , 2008, Inf. Sci..