Some kinds of (epsilon, epsilon or q)-interval-valued fuzzy ideals of BCI-algebras

In this paper, we first introduce the notions of (positive implicative, implicative and commutative) interval-valued fuzzy ideals of BCI-algebras, which are generalizations of (positive implicative, implicative and commutative) fuzzy ideals, respectively, and investigate some of their related properties. The concept of quasi-coincidence of an interval-valued fuzzy point within an interval-valued fuzzy set is introduced. In fact, the concept is a generalized concept of quasi-coincidence of a fuzzy point within a fuzzy set. By using this new idea, we further introduce the notions of (positive implicative, implicative and commutative) (@?,@?@?q)-interval-valued fuzzy ideals of BCI-algebras and investigate some of their related properties. Some characterization theorems of these generalized interval-valued fuzzy ideals are derived. The relationship among these generalized interval-valued fuzzy ideals of BCI-algebras is also considered.

[1]  Jun Ma,et al.  Redefined fuzzy implicative filters , 2007, Inf. Sci..

[2]  Jianming Zhan,et al.  Fuzzy multiply positive implicative hyper BCK-ideals of hyper BCK-algebras , 2004, Int. J. Math. Math. Sci..

[3]  Young Bae Jun,et al.  Applications of soft sets in ideal theory of BCK/BCI-algebras , 2008, Inf. Sci..

[4]  Jianming Zhan,et al.  On f-derivations of BCI-algebras , 2005, Int. J. Math. Math. Sci..

[5]  M. Aslam Ideal theory of BCK-algebra , 1976 .

[6]  Jianming Zhan,et al.  CHARACTERIZATIONS OF DOUBT FUZZY H-IDEALS IN BCK-ALGEBRAS , 2003 .

[7]  C. Chang,et al.  Algebraic analysis of many valued logics , 1958 .

[8]  K. Iseki On BCI-Algebras , 1980 .

[9]  Sandeep Kumar Bhakat,et al.  (∈, ∈∨q)-fuzzy Normal, Quasinormal and Maximal Subgroups , 2000, Fuzzy Sets Syst..

[10]  L. A. ZADEH,et al.  The concept of a linguistic variable and its application to approximate reasoning - I , 1975, Inf. Sci..

[11]  Wenyi Zeng,et al.  Relationship between similarity measure and entropy of interval valued fuzzy sets , 2006, Fuzzy Sets Syst..

[12]  J. Bae ON (α, β)-FUZZY IDEALS OF BCK/BCI-ALGEBRAS , 2004 .

[13]  IorgulescuAfrodita On BCK algebras , 2008, SOCO 2008.

[14]  R. Biswas Rosenfeld's fuzzy subgroups with interval-valued membership functions , 1994 .

[15]  Y. Jun,et al.  SOME TYPES OF (Î,Î VQ)-INTERVAL-VALUED FUZZY IDEALS OF BCI ALGEBRAS , 2009 .

[16]  Lotfi A. Zadeh,et al.  Toward a generalized theory of uncertainty (GTU)--an outline , 2005, Inf. Sci..

[17]  Jie Meng,et al.  Fuzzy ideals in BCI-algebras , 2001, Fuzzy Sets Syst..

[18]  Glad Deschrijver,et al.  Arithmetic operators in interval-valued fuzzy set theory , 2007, Inf. Sci..

[19]  W. Dudek ON GROUP-LIKE BCI-ALGEBRAS , 1988 .

[20]  J Meng Positive Implicative BCI-algebras , 1993 .

[21]  Petr Hájek,et al.  Metamathematics of Fuzzy Logic , 1998, Trends in Logic.

[22]  Bijan Davvaz,et al.  Redefined fuzzy Hv-submodules and many valued implications , 2007, Inf. Sci..

[23]  Young Bae Jun,et al.  Intuitionistic nil radicals of intuitionistic fuzzy ideals and Euclidean intuitionistic fuzzy ideals in rings , 2007, Inf. Sci..

[24]  Jie Meng,et al.  On fuzzy ideals in BCK/BCI-algebras , 2005, Fuzzy Sets Syst..

[25]  Zhu Rong,et al.  Fuzzy Commutative Ideals in BCK-algebras , 2003 .

[26]  D. Mundici MV-algebras are categorically equivalent to bounded commutative BCK-algebras , 1986 .

[27]  L. Zadeh Fuzzy Topology. I. Neighborhood Structure of a Fuzzy Point and Moore-Smith Convergence* , 2003 .

[28]  Michiro Kondo,et al.  ON TRANSFER PRINCIPLE OF FUZZY BCK/BCI-ALGEBRAS , 2004 .

[29]  J. Zhan,et al.  T-FUZZY MULTIPLY POSITIVE IMPLICATIVE BCC-IDEALS OF BCC-ALGEBRAS , 2003 .

[30]  Jianming Zhan,et al.  Fuzzy h-ideals of hemirings , 2007, Inf. Sci..

[31]  Lotfi A. Zadeh,et al.  The Concepts of a Linguistic Variable and its Application to Approximate Reasoning , 1975 .

[32]  A. Iorgulescu SOME DIRECT ASCENDENTS OF WAJSBERG AND MV ALGEBRAS , 2003 .

[33]  S. K. Bhakat,et al.  (ε Ɛ V Q)-fuzzy Subgroup , 1996, Fuzzy Sets Syst..

[34]  Yisheng Huang ON IMPLICATIVE BCI-ALGEBRAS , 2006 .

[35]  K. Iseki,et al.  AN INTRODUCTION TO THE THEORY OF THE BCK-ALGEBRAS , 1978 .

[36]  Y. Jun On (α,β)-fuzzy subalgebras of BCK/BCI-algebras , 2005 .

[37]  K. Iseki,et al.  ON AXIOM SYSTEMS OF PROPOSITIONAL CALCULI XIV , 1966 .

[38]  Yang Xu,et al.  Pseudo-BCK algebras and PD-posets , 2007, Soft Comput..

[39]  K. Iseki An Algebra Related with a Propositional Calculus , 1966 .

[40]  Jie Meng,et al.  AN IDEAL CHARACTERIZATION OF COMMUTATIVE BCI-ALGEBRAS , 1993 .

[41]  Lotfi A. Zadeh,et al.  Toward a generalized theory of uncertainty (GTU) - an outline , 2005, GrC.

[42]  Jie Meng,et al.  FSI-IDEALS AND FSC-IDEALS OF BCI-ALGEBRAS , 2004 .

[43]  Young Bae Jun,et al.  Fuzzy strong implicative hyper BCK-ideals of hyper BCK-algebras , 2005, Inf. Sci..

[44]  Afrodita Iorgulescu,et al.  Pseudo-Iséki Algebras. Connection with Pseudo-BL Algebras , 2005, J. Multiple Valued Log. Soft Comput..

[45]  Lluis Godo,et al.  Monoidal t-norm based logic: towards a logic for left-continuous t-norms , 2001, Fuzzy Sets Syst..

[46]  Bijan Davvaz,et al.  (∈, ∈ ∨ q)-fuzzy subnear-rings and ideals , 2006, Soft Comput..

[47]  Yang Xu,et al.  BCI-implicative ideals of BCI-algebras , 2007, Inf. Sci..

[48]  Jianming Zhan,et al.  A new view of fuzzy hypernear-rings , 2008, Inf. Sci..