A structural and functional perspective of alphavirus replication and assembly.

Alphaviruses are small, spherical, enveloped, positive-sense ssRNA viruses responsible for a considerable number of human and animal diseases. Alphavirus members include Chikungunya virus, Sindbis virus, Semliki Forest virus, the western, eastern and Venezuelan equine encephalitis viruses, and the Ross River virus. Alphaviruses can cause arthritic diseases and encephalitis in humans and animals and continue to be a worldwide threat. The viruses are transmitted by blood-sucking arthropods, and replicate in both arthropod and vertebrate hosts. Alphaviruses form spherical particles (65-70 nm in diameter) with icosahedral symmetry and a triangulation number of four. The icosahedral structures of alphaviruses have been defined to very high resolutions by cryo-electron microscopy and crystallographic studies. In this review, we summarize the major events in alphavirus infection: entry, replication, assembly and budding. We focus on data acquired from structural and functional studies of the alphaviruses. These structural and functional data provide a broader perspective of the virus lifecycle and structure, and allow additional insight into these important viruses.

[1]  S. Sawicki,et al.  Fate of Minus-Strand Templates and Replication Complexes Produced by a P23-Cleavage-Defective Mutant of Sindbis Virus , 2009, Journal of Virology.

[2]  D. Griffin,et al.  The nsP3 macro domain is important for Sindbis virus replication in neurons and neurovirulence in mice , 2009, Virology.

[3]  Alexander E. Gorbalenya,et al.  The Crystal Structures of Chikungunya and Venezuelan Equine Encephalitis Virus nsP3 Macro Domains Define a Conserved Adenosine Binding Pocket , 2009, Journal of Virology.

[4]  D. Griffin,et al.  Role of N-Linked Glycosylation for Sindbis Virus Infection and Replication in Vertebrate and Invertebrate Systems , 2009, Journal of Virology.

[5]  M. Kielian,et al.  Role of Conserved Histidine Residues in the Low-pH Dependence of the Semliki Forest Virus Fusion Protein , 2009, Journal of Virology.

[6]  S. Mukhopadhyay,et al.  Role of Conserved Cysteines in the Alphavirus E3 Protein , 2008, Journal of Virology.

[7]  G. Atkins,et al.  Therapeutic and prophylactic applications of alphavirus vectors , 2008, Expert Reviews in Molecular Medicine.

[8]  E. Frolova,et al.  Different Types of nsP3-Containing Protein Complexes in Sindbis Virus-Infected Cells , 2008, Journal of Virology.

[9]  R. Kuhn,et al.  Role for Conserved Residues of Sindbis Virus Nonstructural Protein 2 Methyltransferase-Like Domain in Regulation of Minus-Strand Synthesis and Development of Cytopathic Infection , 2008, Journal of Virology.

[10]  E. Frolova,et al.  A New Role for ns Polyprotein Cleavage in Sindbis Virus Replication , 2008, Journal of Virology.

[11]  Wei Zhang,et al.  Structure of the Immature Dengue Virus at Low pH Primes Proteolytic Maturation , 2008, Science.

[12]  I. Sarand,et al.  Mutations in the nuclear localization signal of nsP2 influencing RNA synthesis, protein expression and cytotoxicity of Semliki Forest virus , 2008, The Journal of general virology.

[13]  B. Golden,et al.  Role of Sindbis Virus Capsid Protein Region II in Nucleocapsid Core Assembly and Encapsidation of Genomic RNA , 2008, Journal of Virology.

[14]  M. Enserink Chikungunya: No Longer a Third World Disease , 2007, Science.

[15]  Luis Carrasco,et al.  Viroporins from RNA viruses induce caspase‐dependent apoptosis , 2007, Cellular microbiology.

[16]  R. Kuhn,et al.  Functional characterization of the Sindbis virus E2 glycoprotein by transposon linker-insertion mutagenesis. , 2007, Virology.

[17]  L. Xing,et al.  The Dynamic Envelope of a Fusion Class II Virus , 2007, Journal of Biological Chemistry.

[18]  R. English,et al.  Development of Sindbis Viruses Encoding nsP2/GFP Chimeric Proteins and Their Application for Studying nsP2 Functioning , 2007, Journal of Virology.

[19]  S. Weaver,et al.  Capsid Protein of Eastern Equine Encephalitis Virus Inhibits Host Cell Gene Expression , 2007, Journal of Virology.

[20]  Joseph M Thompson,et al.  Heparan Sulfate Binding Can Contribute to the Neurovirulence of Neuroadapted and Nonneuroadapted Sindbis Viruses , 2007, Journal of Virology.

[21]  E. Frolova,et al.  The Old World and New World Alphaviruses Use Different Virus-Specific Proteins for Induction of Transcriptional Shutoff , 2006, Journal of Virology.

[22]  R. Kuhn,et al.  Catalytic Core of Alphavirus Nonstructural Protein nsP4 Possesses Terminal Adenylyltransferase Activity , 2006, Journal of Virology.

[23]  R. Kuhn,et al.  Alphavirus Capsid Protein Helix I Controls a Checkpoint in Nucleocapsid Core Assembly , 2006, Journal of Virology.

[24]  Andrew T. Russo,et al.  The crystal structure of the Venezuelan equine encephalitis alphavirus nsP2 protease. , 2006, Structure.

[25]  E. Frolova,et al.  Sindbis Virus Nonstructural Protein nsP2 Is Cytotoxic and Inhibits Cellular Transcription , 2006, Journal of Virology.

[26]  D. Ferreira,et al.  Mutations in the Endodomain of Sindbis Virus Glycoprotein E2 Define Sequences Critical for Virus Assembly , 2006, Journal of Virology.

[27]  K. Tomer,et al.  Structural characterization of the E2 glycoprotein from Sindbis by lysine biotinylation and LC-MS/MS. , 2006, Virology.

[28]  D. Griffin,et al.  Heparin-binding and patterns of virulence for two recombinant strains of Sindbis virus. , 2006, Virology.

[29]  R. Hardy The role of the 3' terminus of the Sindbis virus genome in minus-strand initiation site selection. , 2006, Virology.

[30]  Peer Bork,et al.  SMART 5: domains in the context of genomes and networks , 2005, Nucleic Acids Res..

[31]  E. Frolova,et al.  Inhibition of Transcription and Translation in Sindbis Virus-Infected Cells , 2005, Journal of Virology.

[32]  R. Kuhn,et al.  Association of sindbis virus capsid protein with phospholipid membranes and the E2 glycoprotein: implications for alphavirus assembly. , 2005, Biochemistry.

[33]  R. Kuhn,et al.  Heparin binding sites on Ross River virus revealed by electron cryo-microscopy. , 2005, Virology.

[34]  Luis Carrasco,et al.  Requirement of the vesicular system for membrane permeabilization by Sindbis virus. , 2005, Virology.

[35]  R. Cheng,et al.  Budding of alphaviruses. , 2004, Virus research.

[36]  G. Mcinerney,et al.  Semliki Forest virus produced in the absence of the 6K protein has an altered spike structure as revealed by decreased membrane fusion capacity. , 2004, Virology.

[37]  R. Johnston,et al.  Attenuation of Sindbis virus variants incorporating uncleaved PE2 glycoprotein is correlated with attachment to cell-surface heparan sulfate. , 2004, Virology.

[38]  F. Rey,et al.  Purification and Crystallization Reveal Two Types of Interactions of the Fusion Protein Homotrimer of Semliki Forest Virus , 2004, Journal of Virology.

[39]  J. Lepault,et al.  Conformational change and protein–protein interactions of the fusion protein of Semliki Forest virus , 2004, Nature.

[40]  V. Stollar,et al.  ALPHAVIRUSES AND APOPTOSIS , 2004, International reviews of immunology.

[41]  Luis Carrasco,et al.  Viroporins , 2003, FEBS letters.

[42]  J. Lepault,et al.  Visualization of the Target-Membrane-Inserted Fusion Protein of Semliki Forest Virus by Combined Electron Microscopy and Crystallography , 2003, Cell.

[43]  K. Myles,et al.  Deletions in the Putative Cell Receptor-Binding Domain of Sindbis Virus Strain MRE16 E2 Glycoprotein Reduce Midgut Infectivity in Aedes aegypti , 2003, Journal of Virology.

[44]  R. Kuhn,et al.  A Heterologous Coiled Coil Can Substitute for Helix I of the Sindbis Virus Capsid Protein , 2003, Journal of Virology.

[45]  M. Bycroft,et al.  The crystal structure of AF1521 a protein from Archaeoglobus fulgidus with homology to the non-histone domain of macroH2A. , 2003, Journal of molecular biology.

[46]  M. Tuittila,et al.  Amino acid mutations in the replicase protein nsP3 of Semliki Forest virus cumulatively affect neurovirulence. , 2003, The Journal of general virology.

[47]  D. Ferreira,et al.  Morphological variants of Sindbis virus produced by a mutation in the capsid protein. , 2003, Virology.

[48]  H. Lankinen,et al.  Prefusion Rearrangements Resulting in Fusion Peptide Exposure in Semliki Forest Virus* , 2003, The Journal of Biological Chemistry.

[49]  Luis Carrasco,et al.  Interfacial Domains in Sindbis Virus 6K Protein , 2003, The Journal of Biological Chemistry.

[50]  T. Ahola,et al.  Functions of alphavirus nonstructural proteins in RNA replication , 2002, Progress in Nucleic Acid Research and Molecular Biology.

[51]  P. Gage,et al.  Alphavirus 6K Proteins Form Ion Channels* , 2002, The Journal of Biological Chemistry.

[52]  Wei Zhang,et al.  Placement of the Structural Proteins in Sindbis Virus , 2002, Journal of Virology.

[53]  J. H. Strauss,et al.  Molecular Genetic Evidence that the Hydrophobic Anchors of Glycoproteins E2 and E1 Interact during Assembly of Alphaviruses , 2002, Journal of Virology.

[54]  S. Sawicki,et al.  Modification of Asn374 of nsP1 Suppresses a Sindbis Virus nsP4 Minus-Strand Polymerase Mutant , 2002, Journal of Virology.

[55]  J. H. Strauss,et al.  Aura Virus Structure Suggests that the T=4 Organization Is a Fundamental Property of Viral Structural Proteins , 2002, Journal of Virology.

[56]  M. Brémont,et al.  Comparison of Two Aquatic Alphaviruses, Salmon Pancreas Disease Virus and Sleeping Disease Virus, by Using Genome Sequence Analysis, Monoclonal Reactivity, and Cross-Infection , 2002, Journal of Virology.

[57]  D. Gibbons,et al.  The Fusion Peptide of Semliki Forest Virus Associates with Sterol-Rich Membrane Domains , 2002, Journal of Virology.

[58]  C. Rice,et al.  Cis-acting RNA elements at the 5' end of Sindbis virus genome RNA regulate minus- and plus-strand RNA synthesis. , 2001, RNA.

[59]  J. H. Strauss,et al.  Evolutionary Relationships and Systematics of the Alphaviruses , 2001, Journal of Virology.

[60]  L. Kääriäinen,et al.  Site-specific Protease Activity of the Carboxyl-terminal Domain of Semliki Forest Virus Replicase Protein nsP2* , 2001, The Journal of Biological Chemistry.

[61]  Luis Carrasco,et al.  Sindbis Virus Variant with a Deletion in the 6K Gene Shows Defects in Glycoprotein Processing and Trafficking: Lack of Complementation by a Wild-Type 6K Gene intrans , 2001, Journal of Virology.

[62]  P. Liljeström,et al.  M-X-I Motif of Semliki Forest Virus Capsid Protein Affects Nucleocapsid Assembly , 2001, Journal of Virology.

[63]  Ian Field,et al.  Arbovirus of Marine Mammals: a New Alphavirus Isolated from the Elephant Seal Louse, Lepidophthirus macrorhini , 2001, Journal of Virology.

[64]  P. Auvinen,et al.  Biogenesis of the Semliki Forest Virus RNA Replication Complex , 2001, Journal of Virology.

[65]  J. Navaza,et al.  The Fusion Glycoprotein Shell of Semliki Forest Virus An Icosahedral Assembly Primed for Fusogenic Activation at Endosomal pH , 2001, Cell.

[66]  M. Rossmann,et al.  Locations of Carbohydrate Sites on Alphavirus Glycoproteins Show that E1 Forms an Icosahedral Scaffold , 2001, Cell.

[67]  R. Kuhn,et al.  In Vitro Assembly of Sindbis Virus Core-Like Particles from Cross-Linked Dimers of Truncated and Mutant Capsid Proteins , 2001, Journal of Virology.

[68]  T. Ahola,et al.  Elimination of Phosphorylation Sites of Semliki Forest Virus Replicase Protein nsP3* , 2001, The Journal of Biological Chemistry.

[69]  R. Hernandez,et al.  Exposure to Low pH Is Not Required for Penetration of Mosquito Cells by Sindbis Virus , 2001, Journal of Virology.

[70]  Luis Carrasco,et al.  Human immunodeficiency virus type 1 VPU protein affects Sindbis virus glycoprotein processing and enhances membrane permeabilization. , 2001, Virology.

[71]  J. H. Strauss,et al.  Suppressor mutations that allow sindbis virus RNA polymerase to function with nonaromatic amino acids at the N-terminus: evidence for interaction between nsP1 and nsP4 in minus-strand RNA synthesis. , 2000, Virology.

[72]  L. Xing,et al.  Membrane proteins organize a symmetrical virus , 2000, The EMBO journal.

[73]  H. Vihinen,et al.  Phosphorylation site analysis of Semliki forest virus nonstructural protein 3. , 2000, The Journal of biological chemistry.

[74]  D. Gibbons,et al.  Formation and Characterization of the Trimeric Form of the Fusion Protein of Semliki Forest Virus , 2000, Journal of Virology.

[75]  P. Auvinen,et al.  Identification of a Novel Function of the AlphavirusCapping Apparatus , 2000, The Journal of Biological Chemistry.

[76]  R. Kuhn,et al.  Nucleic Acid-Dependent Cross-Linking of the Nucleocapsid Protein of Sindbis Virus , 2000, Journal of Virology.

[77]  R. Hernandez,et al.  A Single Deletion in the Membrane-Proximal Region of the Sindbis Virus Glycoprotein E2 Endodomain Blocks Virus Assembly , 2000, Journal of Virology.

[78]  S D Fuller,et al.  Cryo-electron microscopy reveals the functional organization of an enveloped virus, Semliki Forest virus. , 2000, Molecular cell.

[79]  M. Brémont,et al.  Rainbow Trout Sleeping Disease Virus Is an Atypical Alphavirus , 2000, Journal of Virology.

[80]  D. Griffin,et al.  Induction of Apoptosis by Sindbis Virus Occurs at Cell Entry and Does Not Require Virus Replication , 1999, Journal of Virology.

[81]  M. Kielian,et al.  An Epitope of the Semliki Forest Virus Fusion Protein Exposed during Virus-Membrane Fusion , 1999, Journal of Virology.

[82]  R. Kuhn,et al.  In Vitro Assembly of Alphavirus Cores by Using Nucleocapsid Protein Expressed in Escherichia coli , 1999, Journal of Virology.

[83]  P. Auvinen,et al.  Semliki Forest virus mRNA capping enzyme requires association with anionic membrane phospholipids for activity , 1999, The EMBO journal.

[84]  F. Rey,et al.  The isolation of the ectodomain of the alphavirus E1 protein as a soluble hemagglutinin and its crystallization. , 1999, Virology.

[85]  M. Kielian,et al.  The Cholesterol Requirement for Sindbis Virus Entry and Exit and Characterization of a Spike Protein Region Involved in Cholesterol Dependence , 1999, Journal of Virology.

[86]  M. Welsh,et al.  Salmon pancreas disease virus, an alphavirus infecting farmed Atlantic salmon, Salmo salar L. , 1999, Virology.

[87]  M. Mikkola,et al.  RNA helicase activity of Semliki Forest virus replicase protein NSP2 , 1999, FEBS letters.

[88]  S D Fuller,et al.  The first step: activation of the Semliki Forest virus spike protein precursor causes a localized conformational change in the trimeric spike. , 1998, Journal of molecular biology.

[89]  M. McGee,et al.  The Semliki Forest virus vector induces p53-independent apoptosis. , 1998, The Journal of general virology.

[90]  M. Kielian,et al.  The role of low pH and disulfide shuffling in the entry and fusion of Semliki Forest virus and Sindbis virus. , 1998, Virology.

[91]  T. Kirchhausen,et al.  The clathrin endocytic pathway in viral infection , 1998, The EMBO journal.

[92]  C. Rice,et al.  Template-Dependent Initiation of Sindbis Virus RNA Replication In Vitro , 1998, Journal of Virology.

[93]  A. Joe,et al.  The Transmembrane Domains of Sindbis Virus Envelope Glycoproteins Induce Cell Death , 1998, Journal of Virology.

[94]  J. H. Strauss,et al.  Requirement for an Aromatic Amino Acid or Histidine at the N Terminus of Sindbis Virus RNA Polymerase , 1998, Journal of Virology.

[95]  W. Chiu,et al.  Structural Localization of the E3 Glycoprotein in Attenuated Sindbis Virus Mutants , 1998, Journal of Virology.

[96]  R. Johnston,et al.  Replicon-helper systems from attenuated Venezuelan equine encephalitis virus: expression of heterologous genes in vitro and immunization against heterologous pathogens in vivo. , 1997, Virology.

[97]  D. Griffin,et al.  Amino acid changes in the Sindbis virus E2 glycoprotein that increase neurovirulence improve entry into neuroblastoma cells , 1997, Journal of virology.

[98]  M. Rossmann,et al.  Structure of Semliki Forest virus core protein , 1997, Proteins.

[99]  T. Ahola,et al.  The Effects of Palmitoylation on Membrane Association of Semliki Forest Virus RNA Capping Enzyme* , 1996, The Journal of Biological Chemistry.

[100]  J. H. Strauss,et al.  Interactions between PE2, E1, and 6K required for assembly of alphaviruses studied with chimeric viruses , 1996, Journal of virology.

[101]  C. Rice,et al.  Alphavirus-based expression vectors: strategies and applications. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[102]  W. Duffus,et al.  Mechanisms of mutations inhibiting fusion and infection by Semliki Forest virus , 1996, The Journal of cell biology.

[103]  R. Hernandez,et al.  Mutations in the endo domain of Sindbis virus glycoprotein E2 block phosphorylation, reorientation of the endo domain, and nucleocapsid binding. , 1996, Virology.

[104]  G. Ludwig,et al.  A putative receptor for Venezuelan equine encephalitis virus from mosquito cells , 1996, Journal of virology.

[105]  G. Wengler,et al.  Analyses of the role of structural changes in the regulation of uncoating and assembly of alphavirus cores. , 1996, Virology.

[106]  M. Vihinen,et al.  Aromatic interactions define the binding of the alphavirus spike to its nucleocapsid. , 1996, Structure.

[107]  R. Kuhn,et al.  Identification of a region in the Sindbis virus nucleocapsid protein that is involved in specificity of RNA encapsidation , 1996, Journal of virology.

[108]  M. Rossmann,et al.  Identification of a protein binding site on the surface of the alphavirus nucleocapsid and its implication in virus assembly. , 1996, Structure.

[109]  S. Wesselingh,et al.  Alphavirus-induced apoptosis in mouse brains correlates with neurovirulence , 1996, Journal of virology.

[110]  R. Kuhn,et al.  Putative receptor binding sites on alphaviruses as visualized by cryoelectron microscopy. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[111]  J. H. Strauss,et al.  Budding of alphaviruses. , 1995, Trends in microbiology.

[112]  S. Harrison,et al.  The envelope glycoprotein from tick-borne encephalitis virus at 2 Å resolution , 1995, Nature.

[113]  M. Kielian,et al.  Mutations in the putative fusion peptide of Semliki Forest virus affect spike protein oligomerization and virus assembly , 1995, Journal of virology.

[114]  Timothy S Baker,et al.  Nucleocapsid and glycoprotein organization in an enveloped virus , 1995, Cell.

[115]  S. Lustig,et al.  A pseudo-revertant of a Sindbis virus 6K protein mutant, which corrects for aberrant particle formation, contains two new mutations that map to the ectodomain of the E2 glycoprotein. , 1995, Virology.

[116]  A. Loewy,et al.  The 6-kilodalton membrane protein of Semliki Forest virus is involved in the budding process , 1995, Journal of virology.

[117]  T. Frey Molecular Biology of Rubella Virus , 1994, Advances in Virus Research.

[118]  P. Laakkonen,et al.  Expression of Semliki Forest virus nsP1-specific methyltransferase in insect cells and in Escherichia coli , 1994, Journal of virology.

[119]  S. Sawicki,et al.  Alphavirus nsP3 functions to form replication complexes transcribing negative-strand RNA , 1994, Journal of virology.

[120]  D. T. Brown,et al.  The configuration of Sindbis virus envelope proteins is stabilized by the nucleocapsid protein. , 1994, Virology.

[121]  J. H. Strauss,et al.  The alphaviruses: gene expression, replication, and evolution , 1994, Microbiological reviews.

[122]  L. Kääriäinen,et al.  ATPase and GTPase activities associated with Semliki Forest virus nonstructural protein nsP2 , 1994, Journal of virology.

[123]  P. Liljeström,et al.  A tyrosine‐based motif in the cytoplasmic domain of the alphavirus envelope protein is essential for budding. , 1994, The EMBO journal.

[124]  J. H. Strauss,et al.  The Alphaviruses: Gene Expression, Replication, and Evolution , 1994, Microbiological reviews.

[125]  H Lee,et al.  Mutations in an exposed domain of Sindbis virus capsid protein result in the production of noninfectious virions and morphological variants. , 1994, Virology.

[126]  J. H. Strauss,et al.  Polypeptide requirements for assembly of functional Sindbis virus replication complexes: a model for the temporal regulation of minus‐ and plus‐strand RNA synthesis. , 1994, The EMBO journal.

[127]  Luis Carrasco,et al.  Semliki Forest virus 6K protein modifies membrane permeability after inducible expression in Escherichia coli cells. , 1994, The Journal of biological chemistry.

[128]  R. Johnston,et al.  Lethality of PE2 incorporation into Sindbis virus can be suppressed by second-site mutations in E3 and E2 , 1994, Journal of virology.

[129]  S. Schlesinger,et al.  Interactions between Sindbis virus RNAs and a 68 amino acid derivative of the viral capsid protein further defines the capsid binding site. , 1994, Nucleic acids research.

[130]  J. H. Strauss,et al.  Nucleocapsid-glycoprotein interactions required for assembly of alphaviruses , 1994, Journal of virology.

[131]  J. H. Strauss,et al.  Regulation of Sindbis virus RNA replication: uncleaved P123 and nsP4 function in minus-strand RNA synthesis, whereas cleaved products from P123 are required for efficient plus-strand RNA synthesis , 1994, Journal of virology.

[132]  R. Johnston,et al.  Three-dimensional structure of a membrane-containing virus. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[133]  Dennis T. Brown,et al.  Phosphorylation and dephosphorylation events play critical roles in Sindbis virus maturation. , 1993, Virology.

[134]  R. Johnston,et al.  Structural rearrangement of infecting Sindbis virions at the cell surface: mapping of newly accessible epitopes , 1993, Journal of virology.

[135]  Dennis T. Brown,et al.  Sindbis virus membrane fusion is mediated by reduction of glycoprotein disulfide bridges at the cell surface , 1993, Journal of virology.

[136]  C. Rice,et al.  The signal for translational readthrough of a UGA codon in Sindbis virus RNA involves a single cytidine residue immediately downstream of the termination codon , 1993, Journal of virology.

[137]  M. Schlesinger,et al.  Site-directed mutations in the Sindbis virus E2 glycoprotein identify palmitoylation sites and affect virus budding , 1993, Journal of virology.

[138]  John Calvin Reed,et al.  Conversion of lytic to persistent alphavirus infection by the bcl-2 cellular oncogene , 1993, Nature.

[139]  Dennis T. Brown,et al.  Transient translocation of the cytoplasmic (endo) domain of a type I membrane glycoprotein into cellular membranes , 1993, The Journal of cell biology.

[140]  J. Wahlberg,et al.  Membrane fusion of Semliki Forest virus involves homotrimers of the fusion protein , 1992, Journal of virology.

[141]  G. Wengler,et al.  Identification of a sequence element in the alphavirus core protein which mediates interaction of cores with ribosomes and the disassembly of cores. , 1992, Virology.

[142]  J. H. Strauss,et al.  Identification of the active site residues in the nsP2 proteinase of sindbis virus , 1992, Virology.

[143]  H. Garoff,et al.  Role of cell surface spikes in alphavirus budding , 1992, Journal of virology.

[144]  A. Paredes,et al.  Disulfide bonds are essential for the stability of the Sindbis virus envelope. , 1992, Virology.

[145]  J. H. Strauss,et al.  High-affinity laminin receptor is a receptor for Sindbis virus in mammalian cells , 1992, Journal of virology.

[146]  M. Suomalainen,et al.  Spike protein-nucleocapsid interactions drive the budding of alphaviruses , 1992, Journal of virology.

[147]  S. Harrison,et al.  Crystallization of Sindbis virus and its nucleocapsid. , 1992, Journal of molecular biology.

[148]  Dennis T. Brown,et al.  The mass of the Sindbis virus nucleocapsid suggests it has T = 4 icosahedral symmetry. , 1992, Virology.

[149]  J. Wahlberg,et al.  Membrane fusion process of Semliki Forest virus. II: Cleavage-dependent reorganization of the spike protein complex controls virus entry , 1992, The Journal of cell biology.

[150]  P. Liljeström,et al.  Fate of the 6K membrane protein of Semliki Forest virus during virus assembly. , 1991, Virology.

[151]  M. Rossmann,et al.  Structure of Sindbis virus core protein reveals a chymotrypsin-like serine proteinase and the organization of the virion , 1991, Nature.

[152]  J. H. Strauss,et al.  Sindbis virus RNA polymerase is degraded by the N-end rule pathway. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[153]  M. Kail,et al.  The cytoplasmic domain of alphavirus E2 glycoprotein contains a short linear recognition signal required for viral budding. , 1991, The EMBO journal.

[154]  J. H. Strauss,et al.  Identification of antigenically important domains in the glycoproteins of Sindbis virus by analysis of antibody escape variants , 1991, Journal of virology.

[155]  V. Stollar,et al.  Expression of Sindbis virus nsP1 and methyltransferase activity in Escherichia coli. , 1991, Virology.

[156]  D. Huylebroeck,et al.  In vitro mutagenesis of a full-length cDNA clone of Semliki Forest virus: the small 6,000-molecular-weight membrane protein modulates virus release , 1991, Journal of virology.

[157]  M. Schlesinger,et al.  Site-directed mutations in Sindbis virus E2 glycoprotein's cytoplasmic domain and the 6K protein lead to similar defects in virus assembly and budding. , 1991, Virology.

[158]  J. H. Strauss,et al.  Infectious RNA transcripts from Ross River virus cDNA clones and the construction and characterization of defined chimeras with Sindbis virus. , 1991, Virology.

[159]  Henry Huang,et al.  Analysis of Sindbis virus promoter recognition in vivo, using novel vectors with two subgenomic mRNA promoters , 1991, Journal of virology.

[160]  Dennis T. Brown,et al.  Protein-protein interactions in an alphavirus membrane , 1991, Journal of virology.

[161]  D. Barton,et al.  Solubilization and immunoprecipitation of alphavirus replication complexes , 1991, Journal of virology.

[162]  D. Griffin,et al.  Mechanism of altered Sindbis virus neurovirulence associated with a single-amino-acid change in the E2 Glycoprotein , 1991, Journal of virology.

[163]  M. Kielian,et al.  Cholesterol is required for infection by Semliki Forest virus , 1991, The Journal of cell biology.

[164]  S. Sawicki,et al.  Sindbis virus nsP1 functions in negative-strand RNA synthesis , 1991, Journal of virology.

[165]  P. Liljeström,et al.  Internally located cleavable signal sequences direct the formation of Semliki Forest virus membrane proteins from a polyprotein precursor , 1991, Journal of virology.

[166]  H. Garoff,et al.  Oligomers of the cytoplasmic domain of the p62/E2 membrane protein of Semliki Forest virus bind to the nucleocapsid in vitro , 1990, Journal of virology.

[167]  H. Garoff,et al.  Function of Semliki Forest virus E3 peptide in virus assembly: replacement of E3 with an artificial signal peptide abolishes spike heterodimerization and surface expression of E1 , 1990, Journal of virology.

[168]  D. Huylebroeck,et al.  The signal sequence of the p62 protein of Semliki Forest virus is involved in initiation but not in completing chain translocation , 1990, The Journal of cell biology.

[169]  R. Johnston,et al.  A conformational change in Sindbis virus glycoproteins E1 and E2 is detected at the plasma membrane as a consequence of early virus-cell interaction , 1990, Journal of virology.

[170]  J. H. Strauss,et al.  Cleavage‐site preferences of Sindbis virus polyproteins containing the non‐structural proteinase. Evidence for temporal regulation of polyprotein processing in vivo. , 1990, The EMBO journal.

[171]  J. H. Strauss,et al.  Cleavage between nsP1 and nsP2 initiates the processing pathway of Sindbis virus nonstructural polyprotein P123. , 1990, Virology.

[172]  J. H. Strauss,et al.  Site-directed mutagenesis of the proposed catalytic amino acids of the Sindbis virus capsid protein autoprotease , 1990, Journal of virology.

[173]  J. Peränen,et al.  Nuclear localization of Semliki Forest virus-specific nonstructural protein nsP2 , 1990, Journal of virology.

[174]  J. H. Strauss,et al.  Mutagenesis of the 3' nontranslated region of Sindbis virus RNA , 1990, Journal of virology.

[175]  M. Schlesinger,et al.  Site-directed mutations in the Sindbis virus 6K protein reveal sites for fatty acylation and the underacylated protein affects virus release and virion structure. , 1990, Virology.

[176]  M. Schlesinger,et al.  The Sindbis virus 6K protein can be detected in virions and is acylated with fatty acids. , 1990, Virology.

[177]  H. Garoff,et al.  Fusion function of the Semliki Forest virus spike is activated by proteolytic cleavage of the envelope glycoprotein precursor p62 , 1990, Journal of virology.

[178]  T. Gadek,et al.  Evidence for specificity in the encapsidation of Sindbis virus RNAs , 1989, Journal of virology.

[179]  J. Wahlberg,et al.  The heterodimeric association between the membrane proteins of Semliki Forest virus changes its sensitivity to low pH during virus maturation , 1989, Journal of virology.

[180]  J. H. Strauss,et al.  Mapping of RNA- temperature-sensitive mutants of Sindbis virus: assignment of complementation groups A, B, and G to nonstructural proteins , 1989, Journal of virology.

[181]  J. H. Strauss,et al.  Mapping of RNA- temperature-sensitive mutants of Sindbis virus: complementation group F mutants have lesions in nsP4 , 1989, Journal of virology.

[182]  K. Coombs,et al.  Form-determining functions in Sindbis virus nucleocapsids: nucleosomelike organization of the nucleocapsid , 1989, Journal of virology.

[183]  A. Helenius,et al.  Alphavirus RNA replicase is located on the cytoplasmic surface of endosomes and lysosomes , 1988, The Journal of cell biology.

[184]  J. H. Strauss,et al.  Molecular basis of Sindbis virus neurovirulence in mice , 1988, Journal of virology.

[185]  R. Johnston,et al.  Alternative forms of a strain-specific neutralizing antigenic site on the Sindbis virus E2 glycoprotein. , 1987, Virology.

[186]  H. Garoff,et al.  Processing of the Semliki Forest virus structural polyprotein: role of the capsid protease , 1987, Journal of virology.

[187]  S. Fuller,et al.  The T=4 envelope of sindbis virus is organized by interactions with a complementary T=3 capsid , 1987, Cell.

[188]  K. Takkinen Complete nucleotide sequence of the nonstructural protein genes of Semliki Forest virus. , 1986, Nucleic acids research.

[189]  J. Dubochet,et al.  Envelope structure of Semliki Forest virus reconstructed from cryo-electron micrographs , 1986, Nature.

[190]  A. Helenius,et al.  pH-induced alterations in the fusogenic spike protein of Semliki Forest virus , 1985, The Journal of cell biology.

[191]  A. Helenius,et al.  Role of cholesterol in fusion of Semliki Forest virus with membranes , 1984, Journal of virology.

[192]  P. Argos,et al.  Primary structural comparison of RNA-dependent polymerases from plant, animal and bacterial viruses. , 1984, Nucleic acids research.

[193]  G. Wengler,et al.  Identification of a transfer of viral core protein to cellular ribosomes during the early stages of alphavirus infection. , 1984, Virology.

[194]  Phillips W. Robbinst,et al.  Regulation of asparagine-linked oligosaccharide processing. Oligosaccharide processing in Aedes albopictus mosquito cells. , 1984, The Journal of biological chemistry.

[195]  R. Cross Identification of a unique guanine-7-methyltransferase in Semliki Forest virus (SFV) infected cell extracts. , 1983, Virology.

[196]  J. H. Strauss,et al.  The 5'-terminal sequences of the genomic RNAs of several alphaviruses. , 1983, Journal of molecular biology.

[197]  A. Helenius,et al.  Penetration of semliki forest virus from acidic prelysosomal vacuoles , 1983, Cell.

[198]  J. H. Strauss,et al.  The 3'-non-coding regions of alphavirus RNAs contain repeating sequences. , 1982, Journal of molecular biology.

[199]  M. Schmidt,et al.  Acylation of virol. spike glycoproteins: A feature of enveloped RNA viruses , 1982, Virology.

[200]  E. Elson,et al.  Fluorescence photobleaching recovery measurements reveal differences in envelopment of sindbis and vesicular stomatitis viruses , 1981, Cell.

[201]  E. G. Strauss,et al.  Growth and release of several alphaviruses in chick and BHK cells. , 1980, The Journal of general virology.

[202]  A. Helenius,et al.  The effects of octylglucoside on the Semliki forest virus membrane. Evidence for a spike-protein--nucleocapsid interaction. , 1980, European journal of biochemistry.

[203]  A. Helenius,et al.  On the entry of semliki forest virus into BHK-21 cells , 1980, The Journal of cell biology.

[204]  M. Schmidt,et al.  Evidence for covalent attachment of fatty acids to Sindbis virus glycoproteins. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[205]  S. Harrison,et al.  Hexagonal glycoprotein arrays from Sindbis virus membranes , 1978, Journal of virology.

[206]  B. Sefton Immediate glycosylation of Sindbis virus membrane proteins , 1977, Cell.

[207]  A. Helenius,et al.  Semlike Forest virus membrane proteins. Preparation and characterization of spike complexes soluble in detergent-free medium. , 1976, Biochimica et biophysica acta.

[208]  S. Harrison,et al.  Sindbis virus glycoproteins form a regular icosahedral surface lattice , 1975, Journal of virology.

[209]  K. Simons,et al.  Location of the spike glycoproteins in the Semliki Forest virus membrane. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[210]  D. T. Brown,et al.  Inhibition of Sindbis Virus Release by Media of Low Ionic Strength: an Electron Microscope Study , 1972, Journal of virology.

[211]  R Homma,et al.  [Cellular receptors for animal viruses]. , 1968, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme.

[212]  M. Enserink Infectious diseases. Chikungunya: no longer a third world disease. , 2007, Science.

[213]  F. Rey,et al.  Structure and interactions at the viral surface of the envelope protein E1 of Semliki Forest virus. , 2006, Structure.

[214]  Luis Carrasco,et al.  Translational resistance of late alphavirus mRNA to eIF2alpha phosphorylation: a strategy to overcome the antiviral effect of protein kinase PKR. , 2006, Genes & development.

[215]  J. H. Strauss,et al.  Mapping the structure and function of the E1 and E2 glycoproteins in alphaviruses. , 2006, Structure.

[216]  Abigail L. Smith,et al.  Host cell receptors for two strains of sindbis virus , 2005, Archives of Virology.

[217]  B. Golden,et al.  Sindbis virus nucleocapsid assembly: RNA folding promotes capsid protein dimerization. , 2004, RNA.

[218]  G. Wengler,et al.  Entry of alphaviruses at the plasma membrane converts the viral surface proteins into an ion-permeable pore that can be detected by electrophysiological analyses of whole-cell membrane currents. , 2003, The Journal of general virology.

[219]  K. Lundstrom,et al.  Alphavirus vectors for gene therapy applications. , 2001, Current gene therapy.

[220]  Y. Lu,et al.  Specific roles for lipids in virus fusion and exit. Examples from the alphaviruses. , 2000, Sub-cellular biochemistry.

[221]  D. Griffin,et al.  Regulators of apoptosis on the road to persistent alphavirus infection. , 1997, Annual review of microbiology.

[222]  J. H. Strauss,et al.  9 Cellular Receptors for Alphaviruses , 1994 .

[223]  A. Helenius Semliki Forest virus penetration from endosomes: a morphological study , 1984, Biology of the cell.