Supervised ranking in the weka environment

Software for solving the supervised ranking problem is presented. Four variants of the Ordinal Stochastic Dominance Learner (OSDL) are given, together with the space and time complexity of their implementations. It is shown that the described software, which includes two further algorithms for supervised ranking, fits seamlessly into the weka environment.

[1]  Catherine Blake,et al.  UCI Repository of machine learning databases , 1998 .

[2]  Bernard De Baets,et al.  Characterizable fuzzy preference structures , 1998, Ann. Oper. Res..

[3]  Bernard De Baets,et al.  A probabilistic framework for the design of instance-based supervised ranking algorithms in an ordinal setting , 2008, Ann. Oper. Res..

[4]  Leon Sterling,et al.  Learning and classification of monotonic ordinal concepts , 1989, Comput. Intell..

[5]  Toshihide Ibaraki,et al.  Data Analysis by Positive Decision Trees , 1999, CODAS.

[6]  Rob Potharst,et al.  Quasi-monotone decision trees for ordinal classification , 1998 .

[7]  B. Baets,et al.  Qualitative valuation of environmental criteria through a group consensus based on stochastic dominance , 2008 .

[8]  Denis Bouyssou,et al.  Building Criteria: A Prerequisite for MCDA , 1990 .

[9]  D. Bunn Stochastic Dominance , 1979 .

[10]  Donald Ervin Knuth,et al.  The Art of Computer Programming , 1968 .

[11]  Bernard De Baets,et al.  Improving tractability of group decision making on environmental problems through the use of social intensities of preferences , 2009, Environ. Model. Softw..

[12]  Ian H. Witten,et al.  Data mining: practical machine learning tools and techniques with Java implementations , 2002, SGMD.

[13]  Bernard De Baets,et al.  Optimal restoration of stochastic monotonicity with respect to cumulative label frequency loss functions , 2011, Inf. Sci..

[14]  Bernard De Baets,et al.  Loss optimal monotone relabeling of noisy multi-criteria data sets , 2009, Inf. Sci..

[15]  Wlodzimierz Ogryczak,et al.  Dual Stochastic Dominance and Related Mean-Risk Models , 2002, SIAM J. Optim..

[16]  Arie Ben-David,et al.  Automatic Generation of Symbolic Multiattribute Ordinal Knowledge‐Based DSSs: Methodology and Applications* , 1992 .

[17]  B. Baets,et al.  Environmental decision making with conflicting social groups: A case study of the Lar rangeland in Iran , 2010 .

[18]  Tennille M. Christensen The GNU General Public License: Constitutional Subversion? , 2006 .

[19]  Bernard De Baets,et al.  Optimal monotone relabelling of partially non-monotone ordinal data , 2012, Optim. Methods Softw..

[20]  Carlos A. Bana e Costa,et al.  Readings in Multiple Criteria Decision Aid , 2011 .