An Insect-Scale Bioinspired Flapping-Wing-Mechanism for Micro Aerial Vehicle Development

Steps have been taken to reduce the size and mass of a flapping-wing-mechanism previously designed for testing artificial Manduca sexta forewings. A modified scotch-yoke mechanism is implemented to convert continuous rotary motion into flapping-wing oscillatory motion with a desired inter-wing angle and stroke amplitude. The new device measures 33.0 × 41.9 × 33.4 mm (maximum dimensions excluding the forewings) with a total mass of 15.5 g. Approximately 9.3 g of this total mass is attributed to the DC motor alone, which is significantly overpowered, indicating room for improvement. This reduction in size allows for more accurate forewing testing as it achieves proportions closer to the model organism (Manduca sexta). Furthermore, the inclusion of precise micro load cells in the testing apparatus is possible, as the total mass no longer exceeds the maximum loads permissible for these instruments. The design lends itself to employing a compliant yoke that stores and returns energy during stroke reversal thus improving the flapping mechanism’s efficiency. As we make progress in mimicking the Manduca sexta thorax, we become closer in our goal of developing a flapping-wing micro aerial vehicle (FWMAV) with flight capabilities similar to the hawkmoth.