Quantile regression modeling of latent trajectory features with longitudinal data

ABSTRACT Quantile regression has demonstrated promising utility in longitudinal data analysis. Existing work is primarily focused on modeling cross-sectional outcomes, while outcome trajectories often carry more substantive information in practice. In this work, we develop a trajectory quantile regression framework that is designed to robustly and flexibly investigate how latent individual trajectory features are related to observed subject characteristics. The proposed models are built under multilevel modeling with usual parametric assumptions lifted or relaxed. We derive our estimation procedure by novelly transforming the problem at hand to quantile regression with perturbed responses and adapting the bias correction technique for handling covariate measurement errors. We establish desirable asymptotic properties of the proposed estimator, including uniform consistency and weak convergence. Extensive simulation studies confirm the validity of the proposed method as well as its robustness. An application to the DURABLE trial uncovers sensible scientific findings and illustrates the practical value of our proposals.

[1]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[2]  S. Zeger,et al.  Longitudinal data analysis using generalized linear models , 1986 .

[3]  R. Carroll,et al.  Deconvolving kernel density estimators , 1987 .

[4]  L. Stefanski Unbiased estimation of a nonlinear function a normal mean with application to measurement err oorf models , 1989 .

[5]  Tsuyoshi Nakamura Corrected score function for errors-in-variables models : Methodology and application to generalized linear models , 1990 .

[6]  Anthony S. Bryk,et al.  Hierarchical Linear Models: Applications and Data Analysis Methods , 1992 .

[7]  Richard H. Jones Longitudinal data with serial correlation , 1993 .

[8]  Richard H. Jones,et al.  Longitudinal Data with Serial Correlation : A State-Space Approach , 1994 .

[9]  J. R. Cook,et al.  Simulation-Extrapolation: The Measurement Error Jackknife , 1995 .

[10]  P. Diggle Analysis of Longitudinal Data , 1995 .

[11]  Sin-Ho Jung Quasi-Likelihood for Median Regression Models , 1996 .

[12]  J. Horowitz Bootstrap Methods for Median Regression Models , 1996 .

[13]  D. Hand,et al.  Practical Longitudinal Data Analysis , 1996 .

[14]  S. Lipsitz,et al.  Quantile Regression Methods for Longitudinal Data with Drop‐outs: Application to CD4 Cell Counts of Patients Infected with the Human Immunodeficiency Virus , 1997 .

[15]  Xuming He,et al.  Quantile Regression Estimates for a Class of Linear and Partially Linear Errors-in-Variables Models , 1997 .

[16]  Roel Bosker,et al.  Multilevel analysis : an introduction to basic and advanced multilevel modeling , 1999 .

[17]  Z. Ying,et al.  A simple resampling method by perturbing the minimand , 2001 .

[18]  G. Molenberghs,et al.  Linear Mixed Models for Longitudinal Data , 2001 .

[19]  W. Fung,et al.  Median regression for longitudinal data , 2003, Statistics in medicine.

[20]  E. Tamer,et al.  A simple estimator for nonlinear error in variable models , 2003 .

[21]  J. Ware,et al.  Applied Longitudinal Analysis , 2004 .

[22]  R. Koenker Quantile regression for longitudinal data , 2004 .

[23]  Lee-Jen Wei,et al.  Quantile Regression for Correlated Observations , 2004 .

[24]  R. Koenker Quantile Regression: Name Index , 2005 .

[25]  Raymond J. Carroll,et al.  Measurement error in nonlinear models: a modern perspective , 2006 .

[26]  Donald Hedeker,et al.  Longitudinal Data Analysis , 2006 .

[27]  M. Bottai,et al.  Quantile regression for longitudinal data using the asymmetric Laplace distribution. , 2007, Biostatistics.

[28]  H. Tong,et al.  Estimation of the covariance matrix of random effects in longitudinal studies , 2007, 0803.4112.

[29]  R. Koenker,et al.  Regression Quantiles , 2007 .

[30]  B. Wolffenbuttel,et al.  The DURABLE trial 24-week results , 2008 .

[31]  Aurore Delaigle,et al.  Using SIMEX for Smoothing-Parameter Choice in Errors-in-Variables Problems , 2008 .

[32]  B. Wolffenbuttel,et al.  DURAbility of Basal Versus Lispro Mix 75/25 Insulin Efficacy (DURABLE) Trial 24-Week Results , 2009, Diabetes Care.

[33]  J. Fine,et al.  Competing Risks Quantile Regression , 2009 .

[34]  R. Carroll,et al.  Quantile Regression With Measurement Error , 2009, Journal of the American Statistical Association.

[35]  Mendel Fygenson,et al.  INFERENCE FOR CENSORED QUANTILE REGRESSION MODELS IN LONGITUDINAL STUDIES , 2009, 0904.0080.

[36]  M. Harding,et al.  A quantile regression approach for estimating panel data models using instrumental variables , 2009 .

[37]  A. Galvao,et al.  Penalized Quantile Regression for Dynamic Panel Data , 2010 .

[38]  A. Galvao Quantile regression for dynamic panel data with fixed effects , 2011 .

[39]  L. Stefanski,et al.  Corrected-loss estimation for quantile regression with covariate measurement errors. , 2012, Biometrika.

[40]  Alessio Farcomeni,et al.  Quantile regression for longitudinal data based on latent Markov subject-specific parameters , 2010, Statistics and Computing.

[41]  S. Kotz,et al.  The Laplace Distribution and Generalizations , 2012 .

[42]  Liya Fu,et al.  Quantile regression for longitudinal data with a working correlation model , 2012, Comput. Stat. Data Anal..

[43]  Marco Geraci,et al.  Linear Quantile Mixed Models: The lqmm Package for Laplace Quantile Regression , 2014 .

[44]  Weiping Zhang,et al.  Smoothing combined estimating equations in quantile regression for longitudinal data , 2014, Stat. Comput..

[45]  H. Fu,et al.  Identifying factors associated with hypoglycemia-related hospitalizations among elderly patients with T2DM in the US: a novel approach using influential variable analysis , 2014, Current medical research and opinion.

[46]  Minjae Lee,et al.  Quantile Regression For Longitudinal Biomarker Data Subject to Left Censoring and Dropouts , 2014 .

[47]  Yanyuan Ma,et al.  Smoothed and Corrected Score Approach to Censored Quantile Regression With Measurement Errors , 2015 .

[48]  Xiaoming Lu,et al.  Weighted quantile regression for longitudinal data , 2015, Comput. Stat..

[49]  A. Farcomeni,et al.  Linear quantile regression models for longitudinal experiments: an overview , 2015 .

[50]  H. Fu,et al.  Early Glycemic Response Predicts Achievement of Subsequent Treatment Targets in the Treatment of Type 2 Diabetes: A Post hoc Analysis , 2015, Diabetes Therapy.

[51]  Limin Peng,et al.  Quantile regression analysis of censored longitudinal data with irregular outcome‐dependent follow‐up , 2016, Biometrics.

[52]  G. Roglić WHO Global report on diabetes: A summary , 2016 .

[53]  M. Geraci Modelling and estimation of nonlinear quantile regression with clustered data , 2017, Comput. Stat. Data Anal..

[54]  M. Marino,et al.  A non-homogeneous hidden Markov model for partially observed longitudinal responses , 2018, 1803.08255.

[55]  N. Tzavidis,et al.  Mixed hidden Markov quantile regression models for longitudinal data with possibly incomplete sequences , 2018, Statistical methods in medical research.

[56]  M. Geraci Additive quantile regression for clustered data with an application to children's physical activity , 2018, Journal of the Royal Statistical Society. Series C, Applied statistics.

[57]  Marco Geraci,et al.  Modelling and estimation of nonlinear quantile regression with clustered data , 2019, Comput. Stat. Data Anal..

[58]  Victor Chernozhukov,et al.  Quantile regression , 2019, Journal of Econometrics.

[59]  P. Alam ‘Z’ , 2021, Composites Engineering: An A–Z Guide.