Factors Determining Where Category-Selective Areas Emerge in Visual Cortex

A hallmark of functional localization in the human brain is the presence of areas in visual cortex specialized for representing particular categories such as faces and words. Why do these areas appear where they do during development? Recent findings highlight several general factors to consider when answering this question. Experience-driven category selectivity arises in regions that have: (i) pre-existing selectivity for properties of the stimulus, (ii) are appropriately placed in the computational hierarchy of the visual system, and (iii) exhibit domain-specific patterns of connectivity to nonvisual regions. In other words, cortical location of category selectivity is constrained by what category will be represented, how it will be represented, and why the representation will be used.

[1]  F. Simion,et al.  Face detection in complex visual displays: an eye-tracking study with 3- and 6-month-old infants and adults. , 2012, Journal of experimental child psychology.

[2]  Doris Y. Tsao,et al.  Patches with Links: A Unified System for Processing Faces in the Macaque Temporal Lobe , 2008, Science.

[3]  H. P. Op de Beeck,et al.  Dissociations and Associations between Shape and Category Representations in the Two Visual Pathways , 2015, The Journal of Neuroscience.

[4]  Ha Hong,et al.  Explicit information for category-orthogonal object properties increases along the ventral stream , 2016, Nature Neuroscience.

[5]  Wim Vanduffel,et al.  Stimulus representations in body-selective regions of the macaque cortex assessed with event-related fMRI , 2012, NeuroImage.

[6]  Leslie G. Ungerleider,et al.  Curvature-processing network in macaque visual cortex , 2014, Proceedings of the National Academy of Sciences.

[7]  N. Kanwisher,et al.  Multivariate Patterns in Object-Selective Cortex Dissociate Perceptual and Physical Shape Similarity , 2008, PLoS biology.

[8]  Kendrick Kay,et al.  The Functional Neuroanatomy of Human Face Perception. , 2017, Annual review of vision science.

[9]  C. Cavina-Pratesi,et al.  Dissociable neural responses to hands and non-hand body parts in human left extrastriate visual cortex. , 2010, Journal of neurophysiology.

[10]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[11]  M. D’Esposito,et al.  An Area within Human Ventral Cortex Sensitive to “Building” Stimuli Evidence and Implications , 1998, Neuron.

[12]  Timothy J. Andrews,et al.  Category-selective patterns of neural response in the ventral visual pathway in the absence of categorical information , 2016, NeuroImage.

[13]  Alex Martin,et al.  A neural system for learning about object function. , 2006, Cerebral cortex.

[14]  A. Caramazza,et al.  Functional connectivity of visual cortex in the blind follows retinotopic organization principles , 2015, Brain : a journal of neurology.

[15]  Peter Janssen,et al.  Effective Connectivity Reveals Largely Independent Parallel Networks of Face and Body Patches , 2016, Current Biology.

[16]  Tom Hartley,et al.  Low-Level Image Properties of Visual Objects Predict Patterns of Neural Response across Category-Selective Regions of the Ventral Visual Pathway , 2014, The Journal of Neuroscience.

[17]  E. Zohary,et al.  Topographic Representation of the Human Body in the Occipitotemporal Cortex , 2010, Neuron.

[18]  Dwight J. Kravitz,et al.  The ventral visual pathway: an expanded neural framework for the processing of object quality , 2013, Trends in Cognitive Sciences.

[19]  Doris Y. Tsao,et al.  Anatomical Connections of the Functionally Defined “Face Patches” in the Macaque Monkey , 2016, Neuron.

[20]  Talma Hendler,et al.  Eccentricity Bias as an Organizing Principle for Human High-Order Object Areas , 2002, Neuron.

[21]  I. Gauthier,et al.  Beyond Shape: How You Learn about Objects Affects How They Are Represented in Visual Cortex , 2009, PloS one.

[22]  Amir Amedi,et al.  Origins of the specialization for letters and numbers in ventral occipitotemporal cortex , 2015, Trends in Cognitive Sciences.

[23]  Doris Y. Tsao,et al.  The Macaque Face Patch System: A Window into Object Representation. , 2014, Cold Spring Harbor symposia on quantitative biology.

[24]  Jonas Kubilius,et al.  Deep Neural Networks as a Computational Model for Human Shape Sensitivity , 2016, PLoS Comput. Biol..

[25]  Aidan P. Murphy,et al.  Amygdala lesions eliminate viewing preferences for faces in rhesus monkeys , 2018, Proceedings of the National Academy of Sciences.

[26]  Bradford Z. Mahon,et al.  What drives the organization of object knowledge in the brain? , 2011, Trends in Cognitive Sciences.

[27]  Isabel Gauthier,et al.  What constrains the organization of the ventral temporal cortex? , 2000, Trends in Cognitive Sciences.

[28]  Tom Hartley,et al.  Low-level properties of natural images predict topographic patterns of neural response in the ventral visual pathway. , 2015, Journal of vision.

[29]  Johan Wagemans,et al.  How learning might strengthen existing visual object representations in human object-selective cortex , 2016, NeuroImage.

[30]  Kalanit Grill-Spector,et al.  The improbable simplicity of the fusiform face area , 2012, Trends in Cognitive Sciences.

[31]  N. Kanwisher,et al.  Domain specificity in visual cortex. , 2006, Cerebral cortex.

[32]  Nancy Kanwisher,et al.  Structural Connectivity Fingerprints Predict Cortical Selectivity for Multiple Visual Categories across Cortex. , 2016, Cerebral cortex.

[33]  A. Caramazza,et al.  Nonvisual and Visual Object Shape Representations in Occipitotemporal Cortex: Evidence from Congenitally Blind and Sighted Adults , 2014, The Journal of Neuroscience.

[34]  A. Oliva,et al.  A Real-World Size Organization of Object Responses in Occipitotemporal Cortex , 2012, Neuron.

[35]  Brian A. Wandell,et al.  The Development of Cortical Sensitivity to Visual Word Forms , 2011, Journal of Cognitive Neuroscience.

[36]  Michael Henry Tessler,et al.  Privileged Functional Connectivity between the Visual Word Form Area and the Language System , 2017, The Journal of Neuroscience.

[37]  Michael S Beauchamp,et al.  See me, hear me, touch me: multisensory integration in lateral occipital-temporal cortex , 2005, Current Opinion in Neurobiology.

[38]  Randolph Blake,et al.  The Occipital Face Area Is Causally Involved in Facial Viewpoint Perception , 2015, The Journal of Neuroscience.

[39]  N. Kanwisher,et al.  The Fusiform Face Area: A Module in Human Extrastriate Cortex Specialized for Face Perception , 1997, The Journal of Neuroscience.

[40]  Charles A. Perfetti,et al.  Learning to Read an Alphabet of Human Faces Produces Left-lateralized Training Effects in the Fusiform Gyrus , 2014, Journal of Cognitive Neuroscience.

[41]  Stefania Bracci,et al.  On the partnership between neural representations of object categories and visual features in the ventral visual pathway , 2017, Neuropsychologia.

[42]  Amir Amedi,et al.  Visual Cortex Extrastriate Body-Selective Area Activation in Congenitally Blind People “Seeing” by Using Sounds , 2014, Current Biology.

[43]  Peter F. Schade,et al.  Cortex Is Cortex: Ubiquitous Principles Drive Face-Domain Development , 2019, Trends in Cognitive Sciences.

[44]  R. Malach,et al.  The topography of high-order human object areas , 2002, Trends in Cognitive Sciences.

[45]  Natalia Y. Bilenko,et al.  The “Parahippocampal Place Area” Responds Preferentially to High Spatial Frequencies in Humans and Monkeys , 2011, PLoS biology.

[46]  Kalanit Grill-Spector,et al.  Sparsely-distributed organization of face and limb activations in human ventral temporal cortex , 2010, NeuroImage.

[47]  Scott L. Fairhall,et al.  Plastic reorganization of neural systems for perception of others in the congenitally blind , 2017, NeuroImage.

[48]  Daria Proklova,et al.  Disentangling Representations of Object Shape and Object Category in Human Visual Cortex: The Animate–Inanimate Distinction , 2016, Journal of Cognitive Neuroscience.

[49]  Gabriele Janzen,et al.  Selective neural representation of objects relevant for navigation , 2004, Nature Neuroscience.

[50]  N. Kanwisher,et al.  A stable topography of selectivity for unfamiliar shape classes in monkey inferior temporal cortex. , 2008, Cerebral cortex.

[51]  Nancy Kanwisher,et al.  The distribution of category and location information across object-selective regions in human visual cortex , 2008, Proceedings of the National Academy of Sciences.

[52]  Doris Y. Tsao,et al.  Comparing face patch systems in macaques and humans , 2008, Proceedings of the National Academy of Sciences.

[53]  David D. Cox,et al.  Functional magnetic resonance imaging (fMRI) “brain reading”: detecting and classifying distributed patterns of fMRI activity in human visual cortex , 2003, NeuroImage.

[54]  J. Tanaka,et al.  Examining the neural correlates of within-category discrimination in face and non-face expert recognition , 2019, Neuropsychologia.

[55]  Giorgio Vallortigara,et al.  Cortical route for facelike pattern processing in human newborns , 2019, Proceedings of the National Academy of Sciences.

[56]  Dwight J. Kravitz,et al.  A Retinotopic Basis for the Division of High-Level Scene Processing between Lateral and Ventral Human Occipitotemporal Cortex , 2015, The Journal of Neuroscience.

[57]  Daniel D. Dilks,et al.  Organization of high-level visual cortex in human infants , 2017, Nature Communications.

[58]  D. Heeger,et al.  Two Retinotopic Visual Areas in Human Lateral Occipital Cortex , 2006, The Journal of Neuroscience.

[59]  N. Kanwisher,et al.  Visual word processing and experiential origins of functional selectivity in human extrastriate cortex , 2007, Proceedings of the National Academy of Sciences.

[60]  H. Lyytinen,et al.  Brain sensitivity to print emerges when children learn letter–speech sound correspondences , 2010, Proceedings of the National Academy of Sciences.

[61]  A. Amedi,et al.  The brain as a flexible task machine: implications for visual rehabilitation using noninvasive vs. invasive approaches. , 2012, Current opinion in neurology.

[62]  N. Kanwisher Domain specificity in face perception , 2000, Nature Neuroscience.

[63]  H. Rodman Development of inferior temporal cortex in the monkey. , 1994, Cerebral cortex.

[64]  Justin L. Vincent,et al.  Novel domain formation reveals proto-architecture in inferotemporal cortex , 2014, Nature Neuroscience.

[65]  Merim Bilalic,et al.  Revisiting the Role of the Fusiform Face Area in Expertise , 2016, Journal of Cognitive Neuroscience.

[66]  A. Caramazza,et al.  How Visual Is the Visual Cortex? Comparing Connectional and Functional Fingerprints between Congenitally Blind and Sighted Individuals , 2015, The Journal of Neuroscience.

[67]  Tom Hartley,et al.  Patterns of response to visual scenes are linked to the low-level properties of the image , 2014, NeuroImage.

[68]  Doris Y. Tsao,et al.  A Cortical Region Consisting Entirely of Face-Selective Cells , 2006, Science.

[69]  Guy A. Orban,et al.  Fine-grained stimulus representations in body selective areas of human occipito-temporal cortex , 2014, NeuroImage.

[70]  M. Tarr,et al.  Activation of the middle fusiform 'face area' increases with expertise in recognizing novel objects , 1999, Nature Neuroscience.

[71]  Rankin W. McGugin,et al.  High-resolution imaging of expertise reveals reliable object selectivity in the fusiform face area related to perceptual performance , 2012, Proceedings of the National Academy of Sciences.

[72]  Margaret S. Livingstone,et al.  Seeing faces is necessary for face-patch formation , 2017, Nature Neuroscience.

[73]  N. Kanwisher,et al.  The fusiform face area: a cortical region specialized for the perception of faces , 2006, Philosophical Transactions of the Royal Society B: Biological Sciences.

[74]  N. Kanwisher,et al.  Discrimination Training Alters Object Representations in Human Extrastriate Cortex , 2006, The Journal of Neuroscience.

[75]  Dimitri Van De Ville,et al.  White-Matter Connectivity between Face-Responsive Regions in the Human Brain , 2012 .

[76]  N. Kanwisher,et al.  A Preference for Contralateral Stimuli in Human Object- and Face-Selective Cortex , 2007, PloS one.

[77]  H. O. D. Beeck,et al.  Development of visual category selectivity in ventral visual cortex does not require visual experience , 2017 .

[78]  A. Ishai,et al.  Distributed and Overlapping Representations of Faces and Objects in Ventral Temporal Cortex , 2001, Science.

[79]  Stanislas Dehaene,et al.  The emergence of the visual word form: Longitudinal evolution of category-specific ventral visual areas during reading acquisition , 2018, PLoS biology.

[80]  Jennifer M. D. Yoon,et al.  Functionally Defined White Matter Reveals Segregated Pathways in Human Ventral Temporal Cortex Associated with Category-Specific Processing , 2015, Neuron.

[81]  K. Grill-Spector,et al.  The functional architecture of the ventral temporal cortex and its role in categorization , 2014, Nature Reviews Neuroscience.

[82]  Mariano Sigman,et al.  Hierarchical Coding of Letter Strings in the Ventral Stream: Dissecting the Inner Organization of the Visual Word-Form System , 2007, Neuron.

[83]  Lindsey J. Powell,et al.  Social Origins of Cortical Face Areas , 2018, Trends in Cognitive Sciences.

[84]  T. Andrews,et al.  Intra- and interhemispheric connectivity between face-selective regions in the human brain. , 2012, Journal of neurophysiology.

[85]  Cyril Poupon,et al.  Anatomical Connections of the Visual Word Form Area , 2014, The Journal of Neuroscience.

[86]  Stanislas Dehaene,et al.  Specialization within the ventral stream: the case for the visual word form area , 2004, NeuroImage.

[87]  James J. DiCarlo,et al.  How Does the Brain Solve Visual Object Recognition? , 2012, Neuron.

[88]  Alfonso Caramazza,et al.  Selectivity for large nonmanipulable objects in scene-selective visual cortex does not require visual experience , 2013, NeuroImage.

[89]  Shachar Maidenbaum,et al.  Task Selectivity as a Comprehensive Principle for Brain Organization , 2017, Trends in Cognitive Sciences.

[90]  P. Downing,et al.  Selectivity for the human body in the fusiform gyrus. , 2005, Journal of neurophysiology.

[91]  Paul E. Downing,et al.  Division of Labor between Lateral and Ventral Extrastriate Representations of Faces, Bodies, and Objects , 2011, Journal of Cognitive Neuroscience.

[92]  J. Wagemans,et al.  Brain-decoding fMRI reveals how wholes relate to the sum of parts , 2015, Cortex.

[93]  M. Sigman,et al.  Opinion TRENDS in Cognitive Sciences Vol.9 No.7 July 2005 The neural code for written words: a proposal , 2022 .

[94]  Nancy Kanwisher,et al.  Connectivity precedes function in the development of the visual word form area , 2016, Nature Neuroscience.

[95]  Jinfu Shi,et al.  Chinese and Korean Characters Engage the Same Visual Word Form Area in Proficient Early Chinese-Korean Bilinguals , 2011, PloS one.

[96]  R. Malach,et al.  Top-down engagement modulates the neural expressions of visual expertise. , 2010, Cerebral cortex.

[97]  Talma Hendler,et al.  Center–periphery organization of human object areas , 2001, Nature Neuroscience.

[98]  Leslie G. Ungerleider,et al.  Connections of inferior temporal areas TE and TEO with medial temporal- lobe structures in infant and adult monkeys , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[99]  T. Allison,et al.  Face-Specific Processing in the Human Fusiform Gyrus , 1997, Journal of Cognitive Neuroscience.

[100]  Amir Amedi,et al.  Reading with Sounds: Sensory Substitution Selectively Activates the Visual Word Form Area in the Blind , 2012, Neuron.

[101]  D. Plaut,et al.  Distributed circuits, not circumscribed centers, mediate visual recognition , 2013, Trends in Cognitive Sciences.

[102]  Isabel Gauthier,et al.  Should we reject the expertise hypothesis? , 2007, Cognition.

[103]  N. Kanwisher,et al.  Interpreting fMRI data: maps, modules and dimensions , 2008, Nature Reviews Neuroscience.

[104]  Nancy Kanwisher,et al.  A cortical representation of the local visual environment , 1998, Nature.

[105]  Jonathan Winawer,et al.  A Brain Area for Visual Numerals , 2013, The Journal of Neuroscience.

[106]  Leslie G. Ungerleider,et al.  Neural correlates of category-specific knowledge , 1996, Nature.

[107]  Bevil R. Conway,et al.  Color-Biased Regions of the Ventral Visual Pathway Lie between Face- and Place-Selective Regions in Humans, as in Macaques , 2016, The Journal of Neuroscience.

[108]  M. Livingstone,et al.  A hierarchical, retinotopic proto-organization of the primate visual system at birth , 2017, eLife.

[109]  Xueqi Cheng,et al.  A Network for Scene Processing in the Macaque Temporal Lobe , 2013, Neuron.

[110]  N. Kanwisher,et al.  The Human Body , 2001 .

[111]  Cindy M. Bukach,et al.  Beyond faces and modularity: the power of an expertise framework , 2006, Trends in Cognitive Sciences.

[112]  Zeynep M. Saygin,et al.  Anatomical connectivity patterns predict face-selectivity in the fusiform gyrus , 2011, Nature Neuroscience.

[113]  S Lehéricy,et al.  The visual word form area: spatial and temporal characterization of an initial stage of reading in normal subjects and posterior split-brain patients. , 2000, Brain : a journal of neurology.

[114]  Kalanit Grill-Spector,et al.  Extensive childhood experience with Pokémon suggests eccentricity drives organization of visual cortex , 2019, Nature Human Behaviour.

[115]  S. Dehaene,et al.  How Learning to Read Changes the Cortical Networks for Vision and Language , 2010, Science.

[116]  Marius V Peelen,et al.  Shape-independent object category responses revealed by MEG and fMRI decoding. , 2016, Journal of neurophysiology.

[117]  Kalanit Grill-Spector,et al.  Not one extrastriate body area: Using anatomical landmarks, hMT+, and visual field maps to parcellate limb-selective activations in human lateral occipitotemporal cortex , 2011, NeuroImage.

[118]  Johan Wagemans,et al.  Perceived Shape Similarity among Unfamiliar Objects and the Organization of the Human Object Vision Pathway , 2008, The Journal of Neuroscience.

[119]  C. Wallraven,et al.  Visual and Haptic Shape Processing in the Human Brain: Unisensory Processing, Multisensory Convergence, and Top-Down Influences. , 2015, Cerebral cortex.