Methodology to evaluate fatigue damage under multiaxial random loading

Abstract Manufacturers must assure the reliability of their products, what implies guaranteeing optimal working conditions during their service life. In this work, a methodology is proposed to estimate the damage experienced by a component under non-proportional loading to be made aiming at predicting when the component will fail and where the failure location will happen. In the present case, a novel cyclic counting model is introduced based on a hybrid variant of the rainflow algorithm applied to the results of the Papadopoulos critical plane approach using the Basquin fatigue model. In this way, the damage model is achieved.

[1]  A. Karolczuk,et al.  A Review of Critical Plane Orientations in Multiaxial Fatigue Failure Criteria of Metallic Materials , 2005 .

[2]  Luca Susmel,et al.  Multiaxial notch fatigue , 2009 .

[3]  Hertz On the Contact of Elastic Solids , 1882 .

[4]  Darrell F. Socie,et al.  Simple rainflow counting algorithms , 1982 .

[5]  Candida Petrogalli,et al.  Failure assessment of subsurface rolling contact fatigue in surface hardened components , 2013 .

[6]  D. L. McDiarmid,et al.  A SHEAR STRESS BASED CRITICAL‐PLANE CRITERION OF MULTIAXIAL FATIGUE FAILURE FOR DESIGN AND LIFE PREDICTION , 1994 .

[7]  Michele Ciavarella,et al.  A comparison of multiaxial fatigue criteria as applied to rolling contact fatigue , 2010 .

[8]  Ky Dang Van Modelling of damage induced by contacts between solids , 2008 .

[9]  José A.F.O. Correia,et al.  A probabilistic analysis of Miner's law for different loading conditions , 2016 .

[10]  H. X. Li Kinematic shakedown analysis under a general yield condition with non-associated plastic flow , 2010 .

[11]  Andrea Carpinteri,et al.  Fatigue assessment of notched specimens by means of a critical plane-based criterion and energy concepts , 2016 .

[12]  Andrea Carpinteri,et al.  Spectral fatigue life estimation for non-proportional multiaxial random loading , 2016 .

[13]  Andrea Carpinteri,et al.  An alternative definition of the shear stress amplitude based on the Maximum Rectangular Hull method and application to the C‐S (Carpinteri‐Spagnoli) criterion , 2014 .

[14]  Trevor S. Slack,et al.  A Review of Rolling Contact Fatigue , 2009 .

[15]  I. Papadopoulos,et al.  Critical plane approaches in high-cycle fatigue : On the definition of the amplitude and mean value of the shear stress acting on the critical plane , 1998 .

[16]  Alfonso Fernández-Canteli,et al.  Fatigue Damage Assessment of a Riveted Connection Made of Puddle Iron from the Fão Bridge using the Modified Probabilistic Interpretation Technique , 2015 .

[17]  T. E. Tallian,et al.  Failure atlas for Hertz contact machine elements , 1992 .

[18]  L. Houpert,et al.  Rolling Bearing Stress Based Life—Part I: Calculation Model , 2012 .

[19]  Jesús Vázquez Valeo Efecto de las Tensiones Residuales en la Fatiga por Fretting. , 2013 .

[20]  George Papazafeiropoulos,et al.  Abaqus2Matlab: A suitable tool for finite element post-processing , 2017, Adv. Eng. Softw..

[21]  Andrea Carpinteri,et al.  Critical Plane Orientation Influence on Multiaxial High-Cycle Fatigue Assessment , 2015 .

[22]  José António Fonseca de Oliveira Correia An Integral Probabilistic Approach for Fatigue Lifetime Prediction of Mechanical and Structural Components , 2015 .

[23]  José A.F.O. Correia,et al.  A probabilistic approach for multiaxial fatigue criteria , 2016 .

[24]  Luis Reis,et al.  A multiaxial fatigue approach to Rolling Contact Fatigue in railways , 2014 .

[25]  Alfonso Fernández-Canteli,et al.  A probabilistic interpretation of the Miner number for fatigue life prediction , 2014 .

[26]  T. A. Harris,et al.  Rolling Bearing Analysis , 1967 .

[27]  Andrea Carpinteri,et al.  Fatigue life evaluation of metallic structures under multiaxial random loading , 2016 .

[28]  T. A. Harris,et al.  Essential Concepts of Bearing Technology , 2006 .

[29]  D. L. Mcdiarmid A GENERAL CRITERION FOR HIGH CYCLE MULTIAXIAL FATIGUE FAILURE , 1991 .