Discrimination of sleep stages: a comparison between spectral and nonlinear EEG measures.

[1]  W. Pritchard,et al.  Dimensional analysis of resting human EEG. II: Surrogate-data testing indicates nonlinearity but not low-dimensional chaos. , 1995, Psychophysiology.

[2]  J Röschke,et al.  Sequential analysis of the brain's transfer properties during consecutive REM episodes. , 1995, Electroencephalography and clinical neurophysiology.

[3]  C. J. Stam,et al.  Investigation of nonlinear structure in multichannel EEG , 1995 .

[4]  J. Röschke,et al.  Automatic recognition of rapid eye movement (REM) sleep by artificial neural networks , 1995, Journal of sleep research.

[5]  Joachim Röschke,et al.  Nonlinear analysis of sleep EEG data in schizophrenia: calculation of the principal Lyapunov exponent , 1995, Psychiatry Research.

[6]  F. H. Lopes da Silva,et al.  Chaos or noise in EEG signals , 1995 .

[7]  W R Webber,et al.  Practical detection of epileptiform discharges (EDs) in the EEG using an artificial neural network: a comparison of raw and parameterized EEG data. , 1994, Electroencephalography and clinical neurophysiology.

[8]  H. Semlitsch,et al.  Discrimination between demented patients and normals based on topographic EEG slow wave activity: comparison between z statistics, discriminant analysis and artificial neural network classifiers. , 1994, Electroencephalography and clinical neurophysiology.

[9]  K. Coburn,et al.  EEG-based, neural-net predictive classification of Alzheimer's disease versus control subjects is augmented by non-linear EEG measures. , 1994, Electroencephalography and clinical neurophysiology.

[10]  G. Gurman Assessment of depth of general anesthesia , 1994, International journal of clinical monitoring and computing.

[11]  J. Fell,et al.  Resonance-like phenomena in Lyapunov calculations from data reconstructed by the time-delay method , 1994 .

[12]  A A Borbély,et al.  All-night sleep EEG and artificial stochastic control signals have similar correlation dimensions. , 1994, Electroencephalography and clinical neurophysiology.

[13]  J Röschke,et al.  Nonlinear EEG dynamics during sleep in depression and schizophrenia. , 1994, The International journal of neuroscience.

[14]  J Röschke,et al.  Nonlinear dynamical aspects of the human sleep EEG. , 1994, The International journal of neuroscience.

[15]  I. Feinberg Period/amplitude measures of delta show robust declines across nonrapid eye movement sleep episodes: a comment on Armitage and Roffwarg. , 1993, Sleep.

[16]  J Röschke,et al.  The calculation of the first positive Lyapunov exponent in sleep EEG data. , 1993, Electroencephalography and clinical neurophysiology.

[17]  J P Macher,et al.  Neural network model: application to automatic analysis of human sleep. , 1993, Computers and biomedical research, an international journal.

[18]  R. M. Siegel,et al.  Pattern recognition of the electroencephalogram by artificial neural networks. , 1993, Electroencephalography and clinical neurophysiology.

[19]  A J Gabor,et al.  Automated interictal EEG spike detection using artificial neural networks. , 1992, Electroencephalography and clinical neurophysiology.

[20]  R. Armitage,et al.  Distribution of period-analyzed delta activity during sleep. , 1992, Sleep.

[21]  M Molnár,et al.  Low-dimensional chaos in event-related brain potentials. , 1992, The International journal of neuroscience.

[22]  G. Pfurtscheller,et al.  Prediction of the side of hand movements from single-trial multi-channel EEG data using neural networks. , 1992, Electroencephalography and clinical neurophysiology.

[23]  J. Röschke,et al.  A nonlinear approach to brain function: deterministic chaos and sleep EEG. , 1992, Sleep.

[24]  A Garfinkel,et al.  Nonlinear analysis of EEG sleep states. , 1991, Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology.

[25]  F. H. Lopes da Silva,et al.  Chaos or noise in EEG signals; dependence on state and brain site. , 1991, Electroencephalography and clinical neurophysiology.

[26]  P. Grassberger,et al.  NONLINEAR TIME SEQUENCE ANALYSIS , 1991 .

[27]  T. Inouye,et al.  Quantification of EEG irregularity by use of the entropy of the power spectrum. , 1991, Electroencephalography and clinical neurophysiology.

[28]  A N Mamelak,et al.  Automated staging of sleep in cats using neural networks. , 1991, Electroencephalography and clinical neurophysiology.

[29]  A. Wolf,et al.  Diagnosing chaos in the space circle , 1991 .

[30]  Christopher Essex,et al.  Chaotic time series analyses of epileptic seizures , 1990 .

[31]  R. Bedford,et al.  A Comparison of EEG Determinants of Near‐Awakening from Isoflurane and Fentanyl Anesthesia: Spectral Edge, Median Power Frequency, and δ Ratio , 1989, Anesthesia and analgesia.

[32]  K. Aihara,et al.  12. Chaotic oscillations and bifurcations in squid giant axons , 1986 .

[33]  Theiler,et al.  Spurious dimension from correlation algorithms applied to limited time-series data. , 1986, Physical review. A, General physics.

[34]  Gottfried Mayer-Kress,et al.  Dimensions and Entropies in Chaotic Systems , 1986 .

[35]  A. Babloyantz,et al.  Evidence of Chaotic Dynamics of Brain Activity During the Sleep Cycle , 1985 .

[36]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .

[37]  P. Grassberger,et al.  Measuring the Strangeness of Strange Attractors , 1983 .

[38]  P. Grassberger,et al.  Estimation of the Kolmogorov entropy from a chaotic signal , 1983 .

[39]  F. Takens Detecting strange attractors in turbulence , 1981 .

[40]  B. Hjorth EEG analysis based on time domain properties. , 1970, Electroencephalography and clinical neurophysiology.

[41]  A. Rechtschaffen,et al.  A manual of standardized terminology, technique and scoring system for sleep stages of human subjects , 1968 .