Finite element simulation of perovskite solar cell: A study on efficiency improvement based on structural and material modification

[1]  Henk J. Bolink,et al.  Vapor-Deposited Perovskites: The Route to High-Performance Solar Cell Production? , 2017 .

[2]  Peng Zhang,et al.  A novel method to synthesize low-cost magnesium fluoride spheres from seawater , 2017 .

[3]  Yin Xiao,et al.  Over 20% PCE perovskite solar cells with superior stability achieved by novel and low-cost hole-transporting materials , 2017 .

[4]  Mauricio E. Calvo,et al.  Materials chemistry approaches to the control of the optical features of perovskite solar cells , 2017 .

[5]  Zhen-Kun Tang,et al.  Enhanced optical absorption via cation doping hybrid lead iodine perovskites , 2017, Scientific Reports.

[6]  M. Wasielewski,et al.  Enhanced photovoltaic performance and stability with a new type of hollow 3D perovskite {en}FASnI3 , 2017, Science Advances.

[7]  Yanfa Yan,et al.  Thermally evaporated methylammonium tin triiodide thin films for lead-free perovskite solar cell fabrication , 2016 .

[8]  H. Du,et al.  Device simulation of lead-free CH3NH3SnI3 perovskite solar cells with high efficiency* , 2016 .

[9]  M. Grätzel,et al.  Optical analysis of CH3NH3SnxPb1–xI3 absorbers: a roadmap for perovskite-on-perovskite tandem solar cells† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6ta04840d Click here for additional data file. , 2016, Journal of materials chemistry. A.

[10]  M. Elbahri,et al.  Antireflective Coatings: Conventional Stacking Layers and Ultrathin Plasmonic Metasurfaces, A Mini-Review , 2016, Materials.

[11]  Yunlin Chen,et al.  Optimal Design and Simulation of High-Performance Organic-Metal Halide Perovskite Solar Cells , 2016, IEEE Journal of Quantum Electronics.

[12]  Matthew R. Leyden,et al.  Organometal halide perovskite thin films and solar cells by vapor deposition , 2016 .

[13]  Tom G. Mackay,et al.  Combined optical–electrical finite-element simulations of thin-film solar cells with homogeneous and nonhomogeneous intrinsic layers , 2016 .

[14]  S. Farag,et al.  Enhancing silicon solar cell efficiency with double layer antireflection coating , 2016 .

[15]  Jinsong Huang,et al.  Advances in Perovskite Solar Cells , 2016, Advanced science.

[16]  B. Wang,et al.  Plasmonic absorption enhancement in periodic cross-shaped graphene arrays. , 2015, Optics express.

[17]  H. Bolink,et al.  Trap‐Assisted Non‐Radiative Recombination in Organic–Inorganic Perovskite Solar Cells , 2015, Advanced materials.

[18]  Wei Zhang,et al.  Optical properties and limiting photocurrent of thin-film perovskite solar cells , 2015 .

[19]  Mohammad Khaja Nazeeruddin,et al.  Predicting the Open‐Circuit Voltage of CH3NH3PbI3 Perovskite Solar Cells Using Electroluminescence and Photovoltaic Quantum Efficiency Spectra: the Role of Radiative and Non‐Radiative Recombination , 2015 .

[20]  Shenghao Wang,et al.  Fabrication of semi-transparent perovskite films with centimeter-scale superior uniformity by the hybrid deposition method , 2014 .

[21]  Kesong Yang,et al.  First-Principles Hybrid Functional Study of the Organic–Inorganic Perovskites CH3NH3SnBr3 and CH3NH3SnI3 , 2014 .

[22]  Sandeep Kumar Pathak,et al.  Lead-free organic–inorganic tin halide perovskites for photovoltaic applications , 2014 .

[23]  T. Minemoto,et al.  Device modeling of perovskite solar cells based on structural similarity with thin film inorganic semiconductor solar cells , 2014 .

[24]  Mohammad Khaja Nazeeruddin,et al.  Organohalide lead perovskites for photovoltaic applications , 2014 .

[25]  Yi Li,et al.  Numerical simulation: Toward the design of high-efficiency planar perovskite solar cells , 2014 .

[26]  Mercouri G Kanatzidis,et al.  Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells. , 2014, Journal of the American Chemical Society.

[27]  M. Grätzel,et al.  Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency , 2014, Nature Communications.

[28]  Yanfa Yan,et al.  Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber , 2014 .

[29]  P. Umari,et al.  Relativistic Solar Cells , 2013, 1309.4895.

[30]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[31]  Akhlesh Lakhtakia,et al.  Optical and electrical modeling of an amorphous-silicon tandem solar cell with nonhomogeneous intrinsic layers and a periodically corrugated back-reflector , 2013, Optics & Photonics - Solar Energy + Applications.

[32]  Mercouri G Kanatzidis,et al.  Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. , 2013, Inorganic chemistry.

[33]  A. Amassian,et al.  Electric field-induced hole transport in copper(I) thiocyanate (CuSCN) thin-films processed from solution at room temperature. , 2013, Chemical communications.

[34]  Mahmoud R. M. Atalla,et al.  Effect of nonhomogeneous intrinsic layer in a thin-film amorphous-silicon solar cell , 2013, Photonics West - Optoelectronic Materials and Devices.

[35]  A. Amassian,et al.  Hole‐Transporting Transistors and Circuits Based on the Transparent Inorganic Semiconductor Copper(I) Thiocyanate (CuSCN) Processed from Solution at Room Temperature , 2013, Advanced materials.

[36]  N. Park,et al.  Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% , 2012, Scientific Reports.

[37]  Harry A Atwater,et al.  Design of nanostructured solar cells using coupled optical and electrical modeling. , 2012, Nano letters.

[38]  S. Pat,et al.  Deposition of MgF2 thin films for antireflection coating by using thermionic vacuum arc (TVA) , 2012 .

[39]  Mau-Phon Houng,et al.  Porous SiO₂/MgF₂ broadband antireflection coatings for superstrate-type silicon-based tandem cells. , 2012, Optics express.

[40]  Jürgen Schumacher,et al.  Coupled Optical and Electronic Modeling of Dye-Sensitized Solar Cells for Steady-State Parameter Extraction , 2011 .

[41]  O. S. Heavens,et al.  Optical Properties of Thin Solid Films , 2011 .

[42]  T. Varga,et al.  Electronic and Defect Structures of CuSCN , 2010 .

[43]  S. Gavrilov,et al.  Ways to increase the efficiency of solar cells with extremely thin absorption layers , 2009 .

[44]  T. Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[45]  Takashi Kondo,et al.  Comparative study on the excitons in lead-halide-based perovskite-type crystals CH3NH3PbBr3 CH3NH3PbI3 , 2003 .

[46]  Theresa S. Mayer,et al.  Direct fabrication of two-dimensional titania arrays using interference photolithography , 2001 .

[47]  D. Logan A First Course in the Finite Element Method , 2001 .

[48]  M. Majewski,et al.  Optical properties of metallic films for vertical-cavity optoelectronic devices. , 1998, Applied optics.

[49]  S. Fujihara,et al.  Preparation and characterization of MgF2 thin film by a trifluoroacetic acid method , 1997 .

[50]  N. Miura,et al.  Magnetoabsorption of the lowest exciton in perovskite-type compound (CH3NH3)PbI3 , 1994 .

[51]  M. J. Dodge,et al.  Refractive properties of magnesium fluoride. , 1984, Applied optics.

[52]  H. Macleod,et al.  Antireflection coatings on solar cells , 1979 .

[53]  Satvasheel Powar,et al.  Manufacturing Techniques of Perovskite Solar Cells , 2018 .

[54]  Kai Zhu,et al.  Annealing-free efficient vacuum-deposited planar perovskite solar cells with evaporated fullerenes as electron-selective layers , 2016 .

[55]  Xiao-Jie Wu,et al.  Two-dimensional device modeling of CH3NH3PbI3 based planar heterojunction perovskite solar cells , 2016 .

[56]  Nripan Mathews,et al.  Current progress and future perspectives for organic/inorganic perovskite solar cells , 2014 .

[57]  Michael Grätzel,et al.  Photoelectrochemical cells , 2001, Nature.

[58]  Christophe Ballif,et al.  Ch 3 Nh 3 Pbi 3 Perovskite / Silicon Tandem Solar Cells: Characterization Based Optical Simulations , 2022 .